Turing machines and linear bounded automata
Informatics 2A: Lecture 29

Alex Simpson

School of Informatics
University of Edinburgh
als@inf.ed.ac.uk

23 November, 2012

1/15

als@inf.ed.ac.uk

@ The Chomsky hierarchy: summary
© Turing machines
© Linear bounded automata

@ The limits of computability: Church-Turing thesis

2/15

The Chomsky hierarchy: summary

The Chomsky hierarchy: summary

Level | Language type | Grammars Accepting machines
3 Regular X—e X—=Y, NFAs (or DFAs)
X — aYy
(regular)
2 Context-free X =0 NPDAs
(context-free)
1 | Context-sensitive | a« — (3 Nondet. linear
with o] < || bounded automata
(noncontracting)
0 Recursively a— 0 Turing machines
enumerable (unrestricted)

The material in red will be introduced today.

3/15

The Chomsky hierarchy: summary

The length restriction in noncontracting grammars

What's the effect of the restriction |a| < |3| in noncontracting
grammar rules?

Idea: in a noncontracting derivation S = --- = .- = s of a
nonempty string s, all the sentential forms are of length at most |s].

This means that if L is context-sensitive, and we're trying to decide
whether s € L, we only need to consider possible sentential forms
of length < |s|. So intuitively, we have the problem under control,
at least in principle.

By contrast, without the length restriction, there's no upper limit
on the length of intermediate forms that might appear in a
derivation of s. So if we're searching for a derivation for s, how do
we know when to stop looking? Intuitively, the problem here is wild
and out of control. (This will be made more precise next lecture.)

4/15

Turing machines

Alan Turing (1912-1954)

5/15

Turing machines

Turing machines

Recall that NFAs are ‘essentially memoryless’, whilst NPDAs are
equipped with memory in the form of a stack.

To find the right kinds of machines for the top two Chomsky
levels, we need to allow more general manipulation of memory.

A Turing machine consists of a finite-state control unit, equipped
with a memory tape, infinite in both directions. Each cell on the
tape contains a symbol drawn from a finite alphabet I'.

----- clalc|3|a|b| 5 & -

read, write
move L/R

finite
control

6/15

Turing machines

Turing machines, continued

3

read, write
move L/R

finite
control

At each step, the behaviour of the machine can depend on
@ the current state of the control unit,
@ the tape symbol at the current read position.
Depending on these things, the machine may then
@ overwrite the current tape symbol with a new symbol,
@ shift the tape left or right by one cell,
@ jump to a new control state.
This happens repeatedly until (if ever) the control unit enters some

identified final state.
7/15

Turing machines

Turing machines, formally

A Turing machine T consists of:

@ A set Q of control states

@ An initial state j € @

@ A final (accepting) state f € Q

@ A tape alphabet '

@ An input alphabet ¥ C T

@ A blank symbol — €T — %

@ A transition function § : @ x ' — Q x I' x {L, R}.

A nondeterministic Turing machine replaces the transition function
d with a transition relation A C (Q xT) x (Q x I x {L, R}).

(Numerous variant definitions of Turing machine are possible. All

lead to notions of TM of equivalent power.)
8/15

Turing machines

Turing machines as acceptors

To use a Turing machine T as an acceptor for a language over ¥,
assume = C I, and set up the tape with the test string s € ¥*
written left-to-right starting at the read position, and with blank
symbols everywhere else.

Then let the machine run (maybe overwriting s), and if it enters
the final state, declare that the original string s is accepted.

The language accepted by T (written £(T)) consists of all strings
s that are accepted in this way.

Theorem: A set L C ¥* is generated by some unrestricted (Type 0)
grammar if and only if L = £(T) for some Turing machine T.

So both Type 0 grammars and Turing machines lead to the same
class of recursively enumerable languages.

9/15

Turing machines

Clicker questions

Q1. Which is the most powerful form of language acceptor (i.e.,
accepts the widest class of languages)?

O DFAs

@ NPDAs

© Turing machines

© My laptop (MacBook Pro, 4GB memory)

10/15

Turing machines

Clicker questions

Q1. Which is the most powerful form of language acceptor (i.e.,
accepts the widest class of languages)?

Q2. Which is the least powerful form of language acceptor (i.e.,

accepts the narrowest class of languages)?

O DFAs

@ NPDAs

© Turing machines

© My laptop (MacBook Pro, 4GB memory)

10/15

Linear bounded automata

Linear bounded automata

Suppose we modify our model to allow just a finite tape, initially
containing just the test string s with endmarkers on either side:

F |1 h|ely m|a| n| A

The machine therefore has just a finite amount of memory,
determined by the length of the input string. We call this a linear
bounded automaton.

(LBAs are sometimes defined as having tape length bounded by a
constant multiple of length of input string — doesn't make any
difference in principle.)

Theorem: A language L C X* is context-sensitive if and only if
L = L(T) for some non-deterministic linear bounded automaton T.

Rough idea: we can guess at a derivation for s. We can check each

step since each sentential form fits within the tape. 11/15

Linear bounded automata

Determinism vs. non-determinism: a curiosity

@ At the bottom level of the Chomsky hierarchy, it makes no
difference: every NFA can be simulated by a DFA.

@ At the top level, the same happens. Any nondeterministic
Turing machine can be simulated by a deterministic one.

@ At the context-free level, there is a difference: we need
NPDAs to account for all context-free languages.
(Example: ¥* — {ss | s € £*} is a context-free language whose
complement isn't context-free, see last lecture. However, if L
is accepted by a DPDA then so is its complement.)

o What about the context-sensitive level? Are NLBAs strictly
more powerful than DLBAs? This is still an open question!

(Can't use the context-free argument because CSLs are closed
under complementation — only shown in 1988.)

12/15

Linear bounded automata

Detecting non-acceptance: LBAs versus TMs

Suppose T is an LBA. How might we detect that s is not in £(T)?

Clearly, if there's an accepting computation for s, there's one that
doesn't pass through exactly the same machine configuration twice
(if it did, we could shorten it).

Since the tape is finite, the total number of machine configurations
is finite (though large). So in theory, if T runs for long enough
without reaching the final state, it will enter the same
configuration twice, and we may as well abort.

Note that on this view, repeated configurations would be spotted
not by T itself, but by ‘us watching’, or perhaps by some
super-machine spying on T.

For Turing machines with unlimited tape space, this reasoning
doesn’t work. Is there some general way of spotting that a

computation isn't going to terminate 7?7 See next lecture ...
13/15

The limits of computability: Church-Turing thesis

Wider significance of Turing machines

Turing machines are important because (it's generally believed
that) anything that can be done by any mechanical procedure or
algorithm can in principle be done by a Turing machine. This is
called the Church-Turing Thesis.

E.g.:

@ Any language L C X* that can be ‘recognized’ by some
mechanical procedure can be recognized by a TM.

@ Any mathematical function f : N — N that can be computed
by a mechanical procedure can be computed by a TM (e.g.
representing integers in binary, and requiring the TM to write
the result onto the tape.)

14/15

The limits of computability: Church-Turing thesis

Status of Church-Turing Thesis

The CT Thesis is a somewhat informal statement insofar as the
general notion of a mechanical procedure isn’t formally defined
(although we have a pretty good idea of what we mean by it).

Although a certain amount of philosophical hair-splitting is
possible, the broad idea behind CTT is generally accepted.

At any rate, anything that can be done on any present-day
computer (even disregarding time/memory limitations) can in
principle be done on a TM.

So if we buy into CTT, theorems about what TMs can/can’t do
can be interpreted as fundamental statements about what
can/can’t be accomplished by mechanical computation in general.

We'll see some examples of such theorems next time.

15/15

	The Chomsky hierarchy: summary
	Turing machines
	Linear bounded automata
	The limits of computability: Church-Turing thesis

