
What is programming language semantics?
Micro-Haskell: recap

Operational semantics
Denotational semantics

Semantics of programming languages
Informatics 2A: Lecture 27

Alex Simpson

School of Informatics
University of Edinburgh
als@inf.ed.ac.uk

20 November, 2012

1 / 18

als@inf.ed.ac.uk

What is programming language semantics?
Micro-Haskell: recap

Operational semantics
Denotational semantics

1 What is programming language semantics?

2 Micro-Haskell: recap

3 Operational semantics

4 Denotational semantics

2 / 18

What is programming language semantics?
Micro-Haskell: recap

Operational semantics
Denotational semantics

Semantics for programming languages

We’ve seen that the syntax of NLs (as described by CFGs etc.) is
concerned with what sentences are grammatical and what
structure they have, whilst their semantics are concerned with
what sentences mean.

A similar distinction can be made for programming languages.
Rules associated with lexing, parsing and typechecking concern the
form and structure of legal programs, but say nothing about what
programs should do when you run them.

The latter is what programming language semantics is about. It
thus concerns the later stages of the language processing pipeline.

3 / 18

What is programming language semantics?
Micro-Haskell: recap

Operational semantics
Denotational semantics

Specification vs. implementation

In principle, one way to give a semantics (or ‘meaning’) for a
programming language is to provide a working implementation of
it, e.g. an interpreter or compiler for the language.

However, such an implementation will probably consist of
thousands of lines of code, and so isn’t very suitable as a readable
definition or reference specification of the language.

The latter is what we’re interested in here. In other words, we want
to fill the blank in the following table:

Specification Implementation

Lexical structure Regular exprs. Lexer impl.
Grammatical structure CFGs Parser impl.

Execution behaviour ??? Interpreter/compiler

4 / 18

What is programming language semantics?
Micro-Haskell: recap

Operational semantics
Denotational semantics

Semantic paradigms

We’ll look at two styles of formal programming language semantics:

Operational semantics. Typically consists of a bunch of rules
for ‘executing’ programs given by syntax trees. Oriented
towards implementations of the language. indeed, an op. sem.
often gives rise immediately to a ‘toy implementation’.

Denotational semantics. Typically consists of a compositional
description of the meaning of program phrases (close in spirit
to what we’ve seen for NLs). Oriented towards mathematical
reasoning about the language and about programs written in
it. May be ‘executable’ or not.

These two styles are complementary: ideally, it’s nice to have both.
There are also other styles (e.g. axiomatic semantics), but we
won’t discuss them here.

5 / 18

What is programming language semantics?
Micro-Haskell: recap

Operational semantics
Denotational semantics

Micro-Haskell: recap

We use Micro-Haskell (recall Lecture 13 and Assignment 1) as a
vehicle for introducing the methods of operational and
denotational semantics.
The format of MH declarations is illustrated by:

div :: Integer -> Integer -> Integer ;
div x y = if x<y then 0 else 1 + div (x-y) y ;

This declares, for example, a function div of type
Integer -> Integer -> Integer such that, when applied to
two integer literals m and n, the function application

div m n

returns, as result, the integer literal corresponding to the integer
division of m by n.

6 / 18

What is programming language semantics?
Micro-Haskell: recap

Operational semantics
Denotational semantics

Semantic paradigms in the case of MH

Operational semantics:

This explains the computational process by which MH calculates
the value of a function application, such as div m n.

Denotational semantics:

This defines a mathematical denotation

[[div]] ∈ [[Integer -> Integer -> Integer]]

Roughly, [[Integer->Integer->Integer]] is the set of binary
functions on integers, and [[div]] is the integer-division function.
In reality, denotational semantics is more complicated than this.

7 / 18

What is programming language semantics?
Micro-Haskell: recap

Operational semantics
Denotational semantics

Operational semantics

We model the execution behaviour of programs as a series of
reduction steps.

E.g. for Micro-Haskell:

if 3+5<8 then 4 else 6*7

� if 8<8 then 4 else 6*7

� if False then 4 else 6*7

� 6*7

� 42

A (small-step) operational semantics is basically a bunch of rules
for performing such reductions.

8 / 18

What is programming language semantics?
Micro-Haskell: recap

Operational semantics
Denotational semantics

More complex example

Consider the Micro-Haskell declaration

f x y = x*x + y*y ;

This effectively introduces the definition

f = λx.λy. x*x + y*y

Now consider the evaluation of f 3 4:

f 3 4 � (λx.λy. x*x + y*y) 3 4

� (λy. 3*3 + y*y) 4

� 3*3 + 4*4

� 9 + 4*4

� 9 + 16

� 25

Notice that two of these steps are β-reductions!
9 / 18

What is programming language semantics?
Micro-Haskell: recap

Operational semantics
Denotational semantics

Operational semantics for Micro-Haskell: general rules

Suppose E is a runtime environment associating a definition to
each function symbol, e.g. E (f) = λx.λy.x*x + y*y.

Also let v range over variables of MH, and write n to mean the
integer literal for n.

Relative to E , we can define � as follows:

v � E (v) (v a variable defined in E)

(λv .M)N � M[v 7→ N] (β-reduction)

m + n � m + n, and similarly for other infixes.

if True then M else N � M

if False then M else N � N

Continued on next slide . . .

10 / 18

What is programming language semantics?
Micro-Haskell: recap

Operational semantics
Denotational semantics

Operational semantics for Micro-Haskell (continued)

Let’s say a term M is a value if it’s an integer literal, a boolean
literal, or a λ-abstraction. Let V range over values,

Intuition: values are terms that can’t be reduced any further. We
try to reduce all other terms to values.

To complete the definition of �, we decree that if M � M ′ then:

MN � M ′N

M � N � M ′ � N (� any infix symbol)

V �M � V �M ′ (ditto)

if M then N else P � if M ′ then N else P

We then say M �∗ V (“M evaluates to V ”) if there’s a sequence

M ≡ M0 � M1 � · · ·� Mr ≡ V

That defines the intended behaviour of Micro-Haskell programs.
It’s also how the Assignment 1 evaluator for MH works.

11 / 18

What is programming language semantics?
Micro-Haskell: recap

Operational semantics
Denotational semantics

Two clicker questions

Consider the following MH program.

e :: Integer ;
e = e ;

f :: Integer -> Integer ;
f x = if True then 2*3 else 1+x ;

What happens if the expressions below are evaluated?

e f e

1 There is a parse error.

2 There is a type error.

3 The evaluator goes into a loop.

4 The evaluator terminates and produces an integer as result.

5 The evaluator terminates and produces a different result.

12 / 18

What is programming language semantics?
Micro-Haskell: recap

Operational semantics
Denotational semantics

Operational semantics: further remarks

What happens if we encounter an expression that isn’t a value but
can’t be reduced? E.g. 5 True, or (λx.x)+4 ?

!!! If our original program typechecks, this can never happen !!!

Indeed, we can prove that

if M can be typed, either it’s a value or it can be reduced;

if M has type t and M � M ′, then M ′ has type t.

That’s one reason why type systems are so valuable: they can
guarantee programs won’t derail at runtime.

The general form of operational semantics we’ve described is
immensely flexible. It works beautifully for functional languages like
MH. But it can also be adapted to most other kinds of
programming language.

13 / 18

What is programming language semantics?
Micro-Haskell: recap

Operational semantics
Denotational semantics

Denotational semantics

An operational semantics provides a kind of idealized
implementation of the language in terms of symbolic rules.

That’s fine, but doesn’t give much ‘structural’ understanding.
Conceptually and mathematically, more satisfying to assign
meaning to (parts of) a program — in roughly the way that
mathematical expressions (or indeed NL expressions) have meaning.

This is the idea behind denotational semantics: associate a
denotation [[P]] to each program phrase P in a compositional way.

14 / 18

What is programming language semantics?
Micro-Haskell: recap

Operational semantics
Denotational semantics

Denotational semantics for MH: first attempt

Let’s try interpreting MH types by sets in an obvious way:

[[Integer]] = Z [[Bool]] = B = {T ,F}
[[σ->τ]] = [[τ]][[σ]] (set of all functions from [[σ]] to [[τ]])

A term M :: τ will receive a denotation [[M]] ∈ [[τ]]. More
accurately, if M :: τ is a term in the type environment
Γ = 〈x1 :: σ1, . . . , xn :: σn〉, its denotation will be a function

[[M]]Γ : [[σ1]]× · · · × [[σn]]→ [[τ]]

We define [[M]]Γ compositionally. E.g. writing ~a for 〈a1, . . . , an〉:
[[n]]Γ : ~a 7→ n

[[xi]]Γ : ~a 7→ ai

[[M+N]]Γ : ~a 7→ [[M]]Γ(~a) + [[N]]Γ(~a)

[[M N]]Γ : ~a 7→ [[M]]Γ(~a)([[N]]Γ(~a)), etc.

15 / 18

What is programming language semantics?
Micro-Haskell: recap

Operational semantics
Denotational semantics

Denotational semantics for MH: the challenge

That works well as far as it goes. The problem comes when we try
to interpret recursive definitions, e.g.

div = λx.λy.if x<y then 0 else 1 + div (x-y) y ;

Here we’d end up trying to define [[div]] in terms of itself!

Our simple ‘set-theoretic’ interpretation can’t make sense of this.
One needs an alternative interpretation that builds in some deeper
mathematical properties in order to allow ‘circular definitions’. E.g.
one can interpret the whole of MH using

complete partial orders (non-executable semantics)

game models (executable semantics)

This is where denotational semantics gets interesting, and where,
reluctantly, we move on from MH to something simpler . . .

16 / 18

What is programming language semantics?
Micro-Haskell: recap

Operational semantics
Denotational semantics

Denotational semantics for regular expressions

Let’s turn to an easier example. Recall our (meta)language of
regular expressions:

R → ε | ∅ | a | RR | R + R | R∗

In fact, we’ve already met two good den. sems. for this!

[[R]]1 = L(R), the language (i.e. set of strings) defined by R.
[[R]]2 = the particular NFA for R constructed by the methods
of Lecture 5.

Both of these are defined compositionally: e.g. L(R + R ′) is
defined as L(R) ∪ L(R ′), and the standard NFA for R + R ′ is
constructed out of NFAs for R and R ′. Note that:

[[−]]1 is more abstract than [[−]]2: can have [[R]]2 6= [[R ′]]2
but [[R]]1 = [[R ′]]1. So [[−]]1 is more useful for arguing that
two regular expressions are ‘equivalent’.
However, [[−]]2 is naturally executable, while [[−]]1 is not.

17 / 18

What is programming language semantics?
Micro-Haskell: recap

Operational semantics
Denotational semantics

Summary

Formal semantics can be used to give a concise and precise
reference specification for the intended behaviour of programs.

Operational semantics is nowadays widely used. Denotational
semantics gets quite mathematical and is at present more of a
‘research topic’.

Operational semantics, and some kinds of denotational
semantics, also offer a starting-point for building working
implementations of the language.

Denotational semantics also offers a framework for proving
things about programs. E.g. if [[P]] = [[P ′]], that shows that
P can be replaced by P ′ in any program context without
changing the program’s behaviour.

Ideas from both op. and den. semantics have had a significant
effect on the design of programming languages.

18 / 18

	What is programming language semantics?
	Micro-Haskell: recap
	Operational semantics
	Denotational semantics

