Probabilistic Context-Free Grammars Informatics 2A: Lecture 20

John Longley

2 November 2011

1 Motivation

2 Probabilistic Context-Free Grammars

- Definition
- Conditional Probabilities
- Applications
- Probabilistic CYK

Reading:

J&M 2^{nd} edition, ch. 14 (Introduction \rightarrow Section 14.2)

Motivation

Three things motivate the use of probabilities in grammars and parsing:

- Syntactic disambiguation main motivation
- 2 Coverage issues in developing a grammar for a language
- **③** Representativeness adapting a parser to new domains, texts.

Motivation 1: Ambiguity

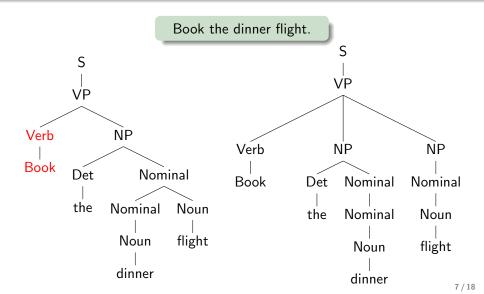
- Amount of ambiguity increases with sentence length.
- Real sentences are fairly long (avg. sentence length in the *Wall Street Journal* is 25 words).
- The amount of (unexpected!) ambiguity increases rapidly with sentence length. This poses a problem, even for chart parsers, if they have to keep track of all possible analyses.
- It would reduce the amount of work required if we could ignore improbable analyses.

A second provision passed by the Senate and House would eliminate a rule allowing companies that post losses resulting from LBO debt to receive refunds of taxes paid over the previous three years. [wsj_1822] (33 words)

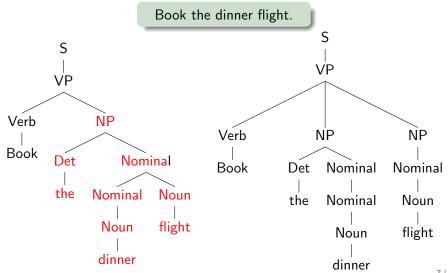
Motivation 2: Coverage

- It is actually very difficult to write a grammar that covers all the constructions used in ordinary text or speech.
- Typically hundreds of rules are required in order to capture both all the different linguistic patterns and all the different possible analyses of the same pattern. (How many grammar rules did we have to add to cover three different analyses of You made her duck?)
- Ideally, one wants to induce (learn) a grammar from a corpus.
- Grammar induction requires probabilities.

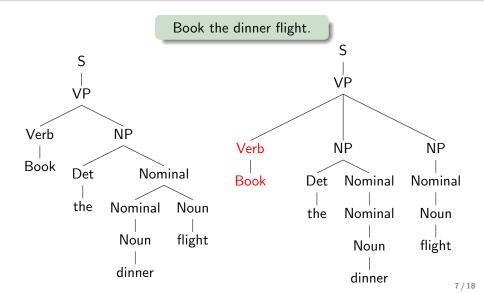
Motivation 3: Representativeness

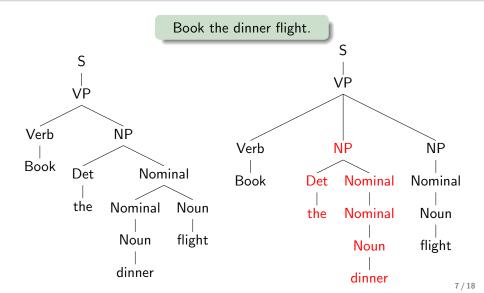

The likelihood of a particular construction can vary, depending on:

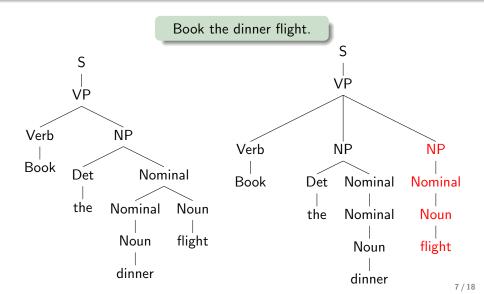
- register (formal vs. informal): eg, *greenish*, *alot*, subject-drop (*Want a beer*?) are all more probable in informal than formal register;
- genre (newspapers, essays, mystery stories, jokes, ads, etc.): Clear from the difference in PoS-taggers trained on different genres in the Brown Corpus.
- domain (biology, patent law, football, etc.).


Probabilistic grammars and parsers can reflect these kinds of distributions.

Example Parses for an Ambiguous Sentence


Book the dinner flight.




Example Parses for an Ambiguous Sentence

7/18

Definition Conditional Probabilities Applications Probabilistic CYK

Probabilistic Context-Free Grammars

A PCFG $\langle N, \Sigma, R, S \rangle$ is defined as follows:

- N is the set of non-terminal symbols
- Σ is the terminals (disjoint from N)
- *R* is a set of rules of the form $A \rightarrow \beta[p]$ where $A \in N$ and $\beta \in (\sigma \cup N)$ *, and *p* is a number between 0 and 1
- S a start symbol, $S \in N$

A PCFG is a CFG in which each rule is associated with a probability.

Definition Conditional Probabilities Applications Probabilistic CYK

More about PCFGS

What does the *p* associated with each rule express?

It expresses the probability that the LHS non-terminal will be expanded as the RHS sequence.

• $P(A \rightarrow \beta | A)$

•
$$\sum_{\beta} P(A \rightarrow \beta | A) = 1$$

• The sum of the probabilities associated with all of the rules expanding the non-terminal A is required to be 1.

$$A \rightarrow \beta \ [p]$$
 or $P(A \rightarrow \beta | A) = p$ or $P(A \rightarrow \beta) = p$

Definition Conditional Probabilities Applications Probabilistic CYK

Example Grammar

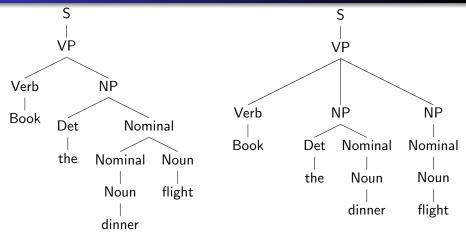
$S \rightarrow NP VP$	[.80]	Det ightarrow the	[.10]
$S \rightarrow Aux NP VP$	[.15]	Det ightarrow a	[.90]
$S \rightarrow VP$	[.05]	$\mathit{Noun} ightarrow \mathit{book}$	[.10]
$NP \rightarrow Pronoun$	[.35]	Noun ightarrow flight	[.30]
NP ightarrow Proper-Noun	[.30]	<i>Noun</i> \rightarrow <i>dinner</i>	[.60]
NP ightarrow Det Nominal	[.15]	Proper-Noun \rightarrow Houston	[.60]
$NP \rightarrow Nominal$	[.15]	Proper-Noun o NWA	[.40]
Nominal \rightarrow Noun	[.75]	Aux ightarrow does	[.60]
Nominal> Nominal Noun	[.05]	Aux ightarrow can	[.40]
$VP \rightarrow Verb$	[.35]	Verb ightarrow book	[.30]
$VP \rightarrow Verb NP$	[.20]	Verb ightarrow include	[.30]
$VP \rightarrow Verb \ NP \ PP$	[.10]	Verb ightarrow prefer	[.20]
$VP \rightarrow Verb PP$	[.15]	Verb ightarrow sleep	[.20]

Definition Conditional Probabilities Applications Probabilistic CYK

PCFGs and disambiguation

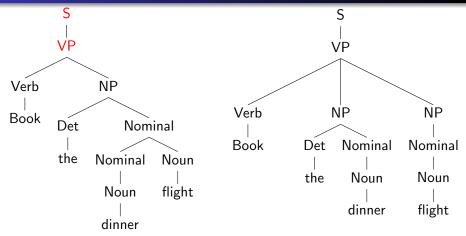
- A PCFG assigns a probability to every parse tree or derivation associated with a sentence.
- This probability is the product of the rules applied in building the parse tree.

$$P(T,S) = \prod_{i=1}^{n} P(A_i \to \beta_i)$$
 n is number of rules in T

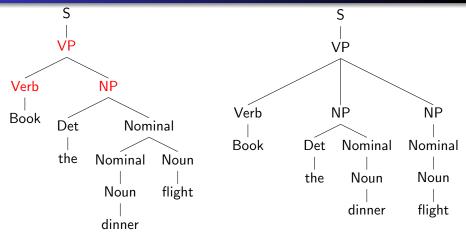

P(T,S) = P(T)P(S|T) = P(S)P(T|S) by definition

But P(S|T) = 1 because S is determined by T

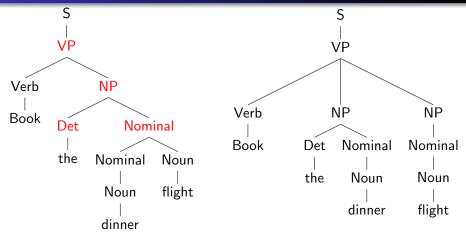
So P(T,S) = P(T)


Definition Conditional Probabilities Applications Probabilistic CYK

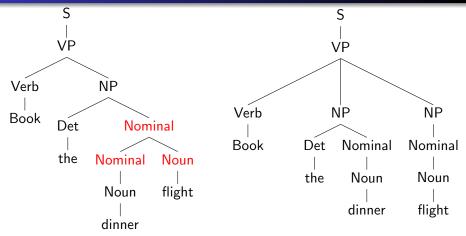
Application 1: Disambiguation


Definition Conditional Probabilities Applications Probabilistic CYK

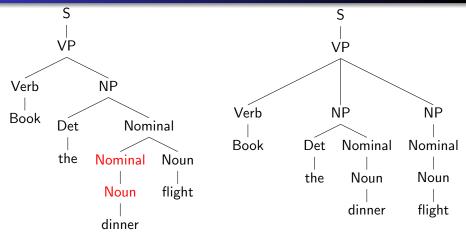
Application 1: Disambiguation


Definition Conditional Probabilities Applications Probabilistic CYK

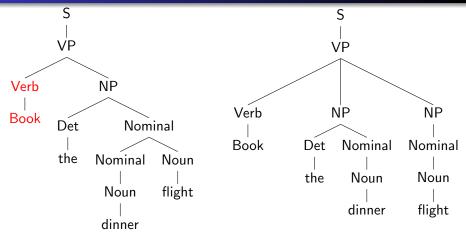
Application 1: Disambiguation


Definition Conditional Probabilities Applications Probabilistic CYK

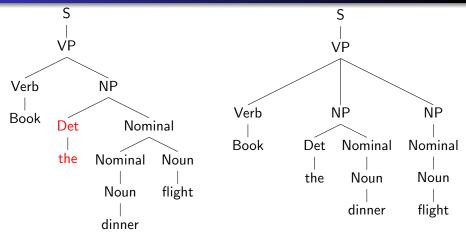
Application 1: Disambiguation


Definition Conditional Probabilities Applications Probabilistic CYK

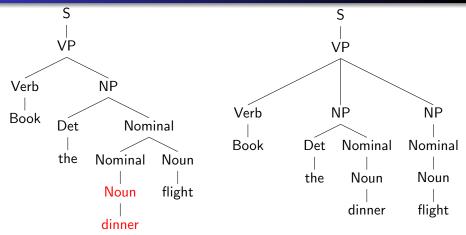
Application 1: Disambiguation


Definition Conditional Probabilities Applications Probabilistic CYK

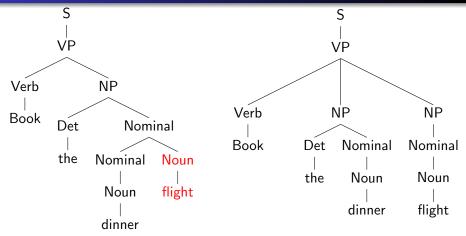
Application 1: Disambiguation


Definition Conditional Probabilities Applications Probabilistic CYK

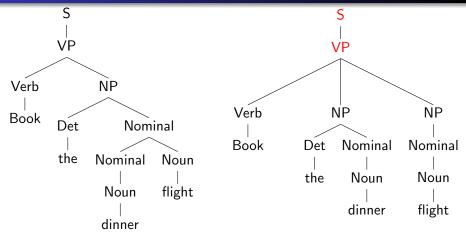
Application 1: Disambiguation


Definition Conditional Probabilities Applications Probabilistic CYK

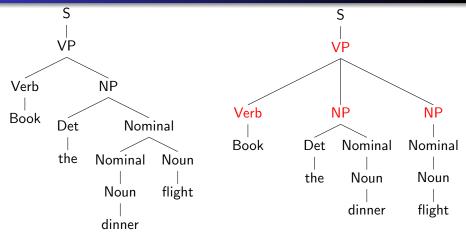
Application 1: Disambiguation


Definition Conditional Probabilities Applications Probabilistic CYK

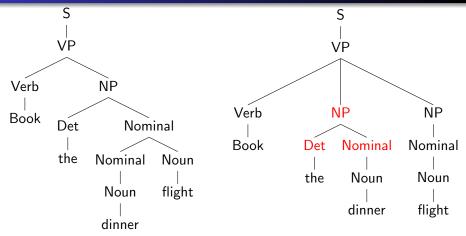
Application 1: Disambiguation


Definition Conditional Probabilities Applications Probabilistic CYK

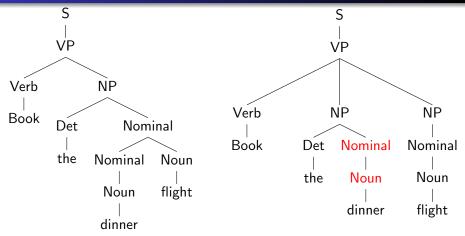
Application 1: Disambiguation


Definition Conditional Probabilities Applications Probabilistic CYK

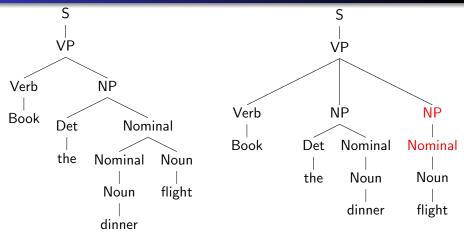
Application 1: Disambiguation


Definition Conditional Probabilities Applications Probabilistic CYK

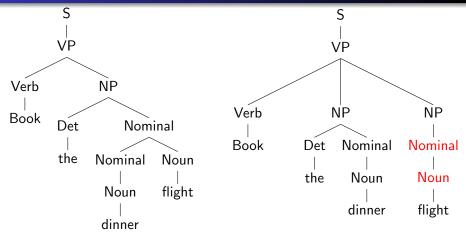
Application 1: Disambiguation


Definition Conditional Probabilities Applications Probabilistic CYK

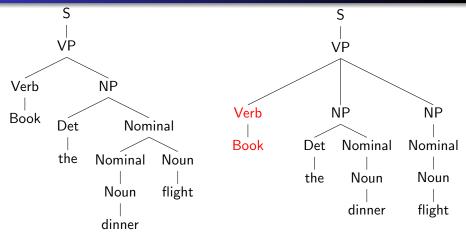
Application 1: Disambiguation


Definition Conditional Probabilities Applications Probabilistic CYK

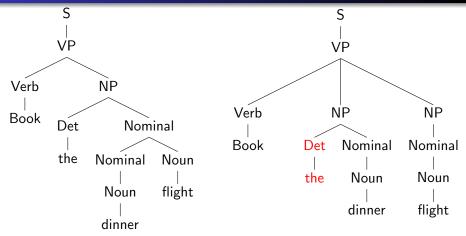
Application 1: Disambiguation


Definition Conditional Probabilities Applications Probabilistic CYK

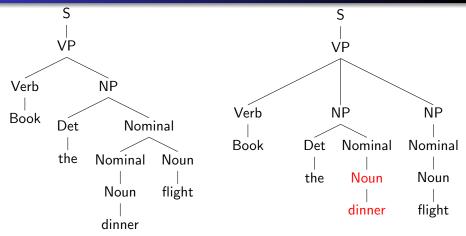
Application 1: Disambiguation


Definition Conditional Probabilities Applications Probabilistic CYK

Application 1: Disambiguation


Definition Conditional Probabilities Applications Probabilistic CYK

Application 1: Disambiguation


Definition Conditional Probabilities Applications Probabilistic CYK

Application 1: Disambiguation

Definition Conditional Probabilities Applications Probabilistic CYK

Application 1: Disambiguation

Definition Conditional Probabilities Applications Probabilistic CYK

Application 1: Disambiguation

Definition Conditional Probabilities Applications Probabilistic CYK

Application 2: Language Modelling

As well as assigning probabilities to parse trees, a PCFG assigns a probability to every sentence generated by the grammar. This is useful for language modelling.

The probability of a sentence is the sum of the probabilities of each parse tree associated with the sentence:

$$P(S) = \sum_{Ts.t.yield(T)=S} P(T, S)$$
$$P(S) = \sum_{s.t.yield(T)=S} P(T)$$

When is it useful to know the probability of a sentence? When ranking the output of speech recognition, machine translation, and error correction systems.

Definition Conditional Probabilities Applications Probabilistic CYK

Probabilistic CYK

Many probabilistic parsers use a probabilistic version of the CYK bottom-up chart parsing algorithm.

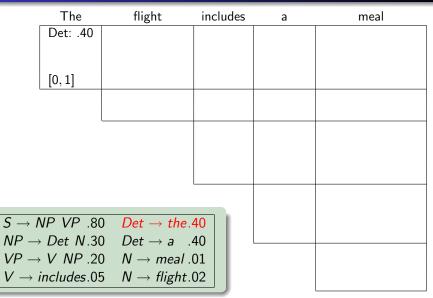
Sentence S of length n and CFG grammar with V non-terminals

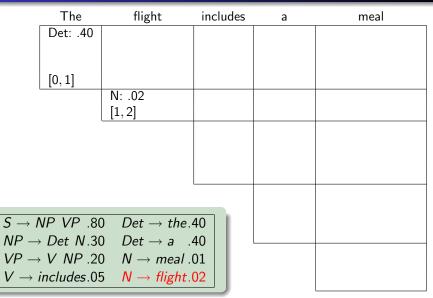
Ordinary CYK 2-d(n+1) * (n+1) array where a value in cell (i, j) is list of non-terminals spanning position *i* through *j* in *S*.

Probabilistic CYK

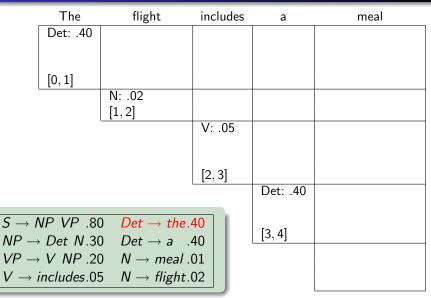
3-d(n+1)*(n+1)*V array where a value in cell (i, j, K) is probability of non-terminal K spanning position *i* through *j* in S

As with regular CYK, probabilistic CYK assumes that the grammar is in Chomsky-normal form (rules $A \rightarrow B \ C$ or $A \rightarrow w$).

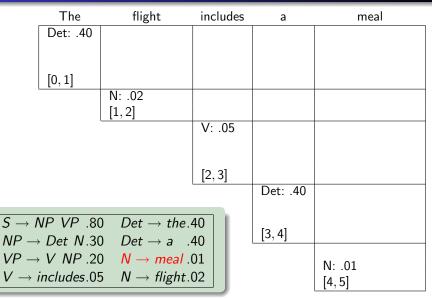

Probabilistic CYK

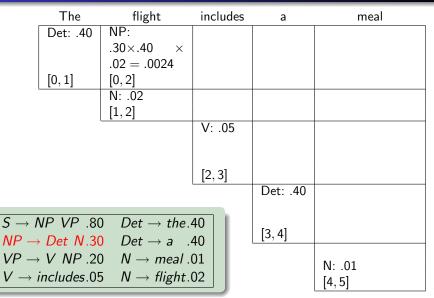

function Probabilistic-CYK(*words*, *grammar*) **returns** most probable parse and its probability

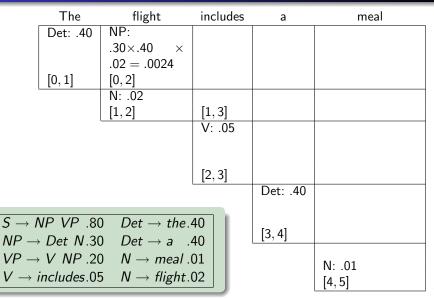
for $j \leftarrow$ from 1 to LENGTH(words) do for all $\{A|A \rightarrow words[j] \in grammar\}$ $table[j - 1, j, A] \leftarrow P(A \rightarrow words[j])$ for $i \leftarrow$ from j - 2 downto 0 do for all $\{A|A \rightarrow BC \in grammar,$ and table[i, k, B] > 0 and $table[k, j, C] > 0\}$ if $(table[i, j, A] < P(A \rightarrow BC) \times table[i, k, B] \times table[k, j, C])$ then $table[i, j, A] \leftarrow P(A \rightarrow BC) \times table[i, k, B] \times table[k, j, C]$ $back[i, j, A] \leftarrow \{k, B, C\}$


return

BUILD_TREE(back[1,LENGTH(words), S]), table[1,LENGTH(words), S]




	The	flight	includes	а	meal
	Det: .40				
	[0, 1]				
		N: .02 [1,2]			
		[-, -]	V: .05		
			[2, 3]		
) $Det \rightarrow the$.			
) $Det ightarrow a$.			
		$N \rightarrow meal$.			
$V \rightarrow I$	includes.05	$N \to flight.$	02		


Probabilistic Context-Free Grammars Probabilistic CONTEXT-Free Grammars

	Definition
Motivation	Conditional Probabilities
Probabilistic Context-Free Grammars	Applications
	Probabilistic CYK

	Definition
Motivation	Conditional Probabilities
Probabilistic Context-Free Grammars	Applications
	Probabilistic CYK

	Definition
Motivation	Conditional Probabilities
Probabilistic Context-Free Grammars	Applications
	Probabilistic CYK

	The	flight	includes	а	meal
	Det: .40	NP:			
		.30×.40 ×			
		.02 = .0024			
	[0, 1]	[0,2]	[0, 3]		
		N: .02			
		[1,2]	[1,3]		
			V: .05		
			[2, 3]		
				Det: .40	
$ S \rightarrow I$	VP VP .80) Det \rightarrow the.	40	[2 4]	
NP	Det N.30) $Det ightarrow a$.	40	[3, 4]	
$VP \rightarrow$	V NP .20	$N \rightarrow meal$.	01		NI: 01
$V \rightarrow$	includes.05	5 $N \rightarrow flight.$	02		N: .01
					[4,5]

	Definition
Motivation	Conditional Probabilities
Probabilistic Context-Free Grammars	Applications
	Probabilistic CYK

	The	flight	includes	а	meal
	Det: .40	NP:			
		.30×.40 ×			
		.02 = .0024			
	[0, 1]	[0,2]	[0, 3]		
		N: .02			
		[1,2]	[1,3]		
			V: .05		
			[2, 3]	[2, 4]	
				Det: .40	
$S \rightarrow I$	VP VP .80) $Det \rightarrow the.$	40	[2 4]	
NP	Det N.30) $Det ightarrow a$.4	40	[3, 4]	
$VP \rightarrow$	V NP .20	$N \rightarrow meal$	01		N 01
		5 $N \rightarrow flight$.			N: .01
					[4,5]

	Definition
Motivation	Conditional Probabilities
Probabilistic Context-Free Grammars	Applications
	Probabilistic CYK

	The	flight	includes	а	meal
	Det: .40	NP:			
		.30×.40 ×			
		.02 = .0024			
	[0, 1]	[0,2]	[0, 3]		
		N: .02			
		[1,2]	[1,3]	[1, 4]	
			V: .05		
			[2, 3]	[2, 4]	
				Det: .40	
$ S \rightarrow I$	VP VP .80) $Det \rightarrow the.$	40	[2 4]	
$ NP \rightarrow$	Det N.30) $Det ightarrow a$.4	40	[3, 4]	
$VP \rightarrow$	V NP .20	$N \rightarrow meal$	01		N 01
$V \rightarrow V$	includes.05	5 $N \rightarrow flight.$	02		N: .01
					[4,5]

	Definition
Motivation	Conditional Probabilities
Probabilistic Context-Free Grammars	Applications
	Probabilistic CYK

	The	flight	includes	а	meal
	Det: .40	NP:			
		.30×.40 ×			
		.02 = .0024			
	[0, 1]	[0,2]	[0, 3]	[0, 4]	
		N: .02			
		[1,2]	[1,3]	[1, 4]	
			V: .05		
			[2, 3]	[2, 4]	
				Det: .40	
) $Det \rightarrow the.$		[3, 4]	
NP →	→ Det N.30) $Det ightarrow a$.4	40	[3,4]	
$VP \rightarrow$	V NP .20	$N \rightarrow meal$.	01		N: .01
$V \rightarrow V$	includes.05	$5 N \rightarrow flight.$	02		[4,5]
					, •, •,

	Definition
Motivation	Conditional Probabilities
Probabilistic Context-Free Grammars	Applications
	Probabilistic CYK

	The	flight	includes	а	meal
	Det: .40	NP:			
		.30×.40 ×			
		.02 = .0024			
	[0, 1]	[0,2]	[0, 3]	[0, 4]	
		N: .02			
		[1,2]	[1, 3]	[1, 4]	
			V: .05		
			[2, 3]	[2, 4]	
				Det: .40	NP: .30 \times .40 \times
					.01 = 0.0012
$S \rightarrow NP VP$.80 $Det \rightarrow the$.40			[1 2]		
$NP \rightarrow Det \ N.30$ $Det \rightarrow a$.40			[3, 4]	[3,5]	
$VP \rightarrow V NP$.20 $N \rightarrow meal$.01				N: .01	
$V \rightarrow includes.05 N \rightarrow flight.02$			02		
					[4,5]

	Definition
Motivation	Conditional Probabilities
Probabilistic Context-Free Grammars	Applications
	Probabilistic CYK

	The	flight	includes	а	meal
	Det: .40	NP:			
		.30×.40 ×			
		.02 = .0024			
	[0, 1]	[0, 2]	[0, 3]	[0, 4]	
		N: .02			
		[1,2]	[1, 3]	[1, 4]	
			V: .05		VP: .20 ×
					.05 × 0.0012 =
					0.000012
			[2, 3]	[2, 4]	[2,5]
			Det: .40		
					NP: $.30 \times .40 \times$
$S \rightarrow NP VP .80 Det \rightarrow the.40$				F- 13	.01 = 0.0012
$NP \rightarrow Det N.30$ $Det \rightarrow a$.40			[3, 4]	[3,5]	
$VP \rightarrow V NP .20 N \rightarrow meal .01$				NI 01	
$V \rightarrow includes.05 N \rightarrow flight.02$				N: .01	
v — 1	neiuues.o.	\rightarrow mgm.	52		[4,5]

	Definition
Motivation	Conditional Probabilities
Probabilistic Context-Free Grammars	Applications
	Probabilistic CYK

	The	flight	includes	а	meal
	Det: .40	NP:			
		.30×.40 ×			
		.02 = .0024			
	[0, 1]	[0,2]	[0, 3]	[0, 4]	
		N: .02			
		[1, 2]	[1,3]	[1, 4]	[1,5]
			V: .05		VP: .20 ×
					.05 × 0.0012 =
					0.000012
			[2, 3]	[2, 4]	[2,5]
			Det: .40	NP: .30 \times .40 \times	
$S \rightarrow NP \ VP \ .80 Det \rightarrow the.40$				[0,4]	.01 = 0.0012
$NP \rightarrow Det \ N.30$ $Det \rightarrow a$.40			[3, 4]	[3,5]	
$VP \rightarrow V NP .20 N \rightarrow meal .01$				NL 01	
$V \rightarrow includes.05 N \rightarrow flight.02$				N: .01	
$v \rightarrow 1$	includes.0t	\rightarrow mgm.	52		[4,5]

	Definition
Motivation	Conditional Probabilities
Probabilistic Context-Free Grammars	Applications
	Probabilistic CYK

	The	flight	includes	а	meal
	Det: .40	NP:			S: .80 $ imes$.0024 $ imes$
		.30×.40 ×			.000012 =
		.02 = .0024			.00000023
	[0, 1]	[0,2]	[0, 3]	[0, 4]	[0,5]
		N: .02			
		[1,2]	[1,3]	[1, 4]	[1,5]
			V: .05		VP: .20 ×
					.05 × 0.0012 =
					0.000012
			[2, 3]	[2, 4]	[2,5]
			Det: .40	ND 20 40	
					NP: $.30 \times .40 \times$
$S \rightarrow NP VP .80 Det \rightarrow the.40$.01 = 0.0012
$NP \rightarrow Det N.30$ $Det \rightarrow a$.40			[3, 4]	[3,5]	
$VP \rightarrow V NP .20 N \rightarrow meal .01$					
$V \rightarrow includes.05 N \rightarrow flight.02$				N: .01	
$\mathbf{v} \rightarrow \mathbf{v}$	includes.03	\rightarrow mgm.	02		[4,5]

Clicker Questions

$$\begin{array}{lll} S \rightarrow NP \ VP & Det \rightarrow the \\ NP \rightarrow Det \ N & Det \rightarrow a \\ VP \rightarrow V \ NP & N \rightarrow meal \\ V \rightarrow includes & N \rightarrow flight \end{array}$$

• Someone tells you that the rules of this grammar are 'equally likely'. What must the probability be for $S \rightarrow NP VP$?

(a) 1 (b) 0.5 (c)
$$\frac{1}{8}$$
 (d) 2

Definition Motivation Conditional Probabilities Probabilistic Context-Free Grammars Applications Probabilistic CYK

Clicker Questions

$$\begin{array}{lll} S \rightarrow NP \ VP & Det \rightarrow the \\ NP \rightarrow Det \ N & Det \rightarrow a \\ VP \rightarrow V \ NP & N \rightarrow meal \\ V \rightarrow includes & N \rightarrow flight \end{array}$$

• Someone tells you that the rules of this grammar are 'equally likely'. What must the probability be for $S \rightarrow NP VP$?

(a) 1 (b) 0.5 (c)
$$\frac{1}{8}$$
 (d) 2

- I How does HMM tagging relate to PCFGs?
 - (a) It really doesn't, though they're both probabilistic.
 - (b) HMM tagging could be used to obtain the terminal probs.
 - (c) HMM tagging also uses CYK.

Motivation Probabilistic Context-Free Grammars Definition Conditional Probabilities Applications Probabilistic CYK

Summary

- A PCFG is a CFG with each rule annotated with a probability;
- the sum of the probabilities of all rules that expand the same non-terminal must be 1;
- probability of a parse tree is the product of the probabilities of all the rules used in this parse;
- probability of sentence is sum of probabilities of all its parses;
- applications for PCFGs: disambiguation, language modeling;
- Probabilistic CYK algorithm.

Next lecture: But where do the rule probabilities come from?