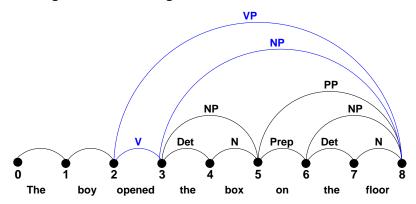
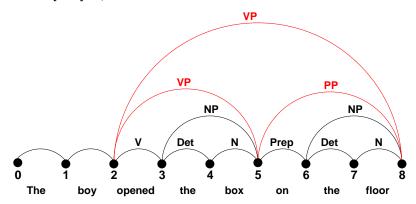
Earley Parsing Informatics 2A: Lecture 19

John Longley

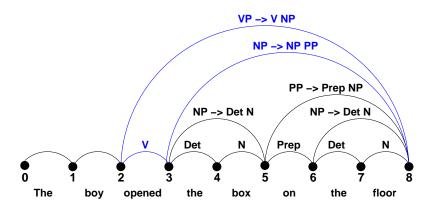

1 November 2011

The CYK chart as a graph The Earley Parsing Algorithm

- 1 The CYK chart as a graph
 - What's wrong with CYK
 - Adding Prediction to the Chart
- The Earley Parsing Algorithm
 - The PREDICTOR Operator
 - The SCANNER Operator
 - The COMPLETER Operator
 - Earley parsing: example
 - Comparing Earley and CYK


Graph representation

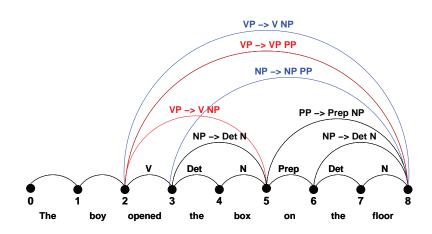
The CYK chart can also be represented as a graph. E.g. for a certain grammar containing rules $VP \rightarrow V$ NP and $VP \rightarrow VP$ PP:


Graph representation

An alternative analysis. Note we don't know which production the VP arc [2, 8] represents: $VP \rightarrow V \ NP$ or $VP \rightarrow VP \ PP$.


CYK Chart entries

If the entire production were recorded, rather than just its LHS (ie, the constituent that it analyses), then we'd (usually) know.



CYK Chart entries

If the entire production were recorded, rather than just its LHS (ie, the constituent that it analyses), then we'd (usually) know.

Chart entries: Both analyses

CYK Chart entries

The CYK algorithm avoids redundant work by storing in a chart all the constituents it finds.

But it populates the table with phantom constituents, that don't form part of any complete parse. Can be a significant problem in long sentences.

The idea of the *Earley algorithm* is to avoid this, by only building constituents that are compatible with the input read so far.

Earley Parsing

Key idea: as well as completed productions (ones whose entire RHS have been recognized), we also record incomplete productions (ones for which there may so far be only partial evidence).

- Incomplete productions (aka incomplete constituents) are effectively predictions about what might come next and what will be learned from finding it.
- Incomplete constituents can be represented using an extended form of production rule called a dotted rule, e.g. $VP \rightarrow V \bullet NP$.
- The dot indicates how much of the RHS has already been found. The rest is a prediction of what is to come.

Earley Parsing

- Allows arbitrary CFGs
- Top-down control
- Fills a table in a single sweep over the input
- Table entries represent:
 - Completed constituents and their locations
 - In-progress constituents
 - Predicted constituents

States

The table entries are called states and are represented with dotted-rules.

$$S \rightarrow \bullet \ VP \ [0,0]$$
 A VP is predicted at the start of the sentence $NP \rightarrow Det \bullet Nominal \ [1,2]$ An NP is in progress; seen Det , $Nominal$ is expected $VP \rightarrow V \ NP \ \bullet [0,3]$ A VP has been found starting at 0 and ending at 3

Once chart is populated there should be an S the final column that spans from 0 to N and is complete: $S \to \alpha \bullet [0, N]$. If that's the case you're done.

Sketch of Earley Algorithm

- Predict all the states you can upfront, working top-down from S
- 2 For each word in the input:
 - Scan in the word.
 - Complete or extend existing states based on matches.
 - Add new predictions.
- When out of words, look at the chart to see if you have a winner.

The algorithm uses three basic operations to process states in the chart: PREDICTOR and COMPLETER add states to the chart entry being processed; SCANNER adds a state to the next chart entry.

PREDICTOR

- Creates new states representing top-down expectations
- Applied to any state that has a non-terminal immediately to its right other than a part-of-speech category
- Application results in creation of one new state for each alternative expansion of that non-terminal
- New states placed into same chart entry as generating state

$$S \rightarrow \bullet VP$$
, [0,0]
 $VP \rightarrow \bullet \quad Verb$, [0,0]
 $VP \rightarrow \bullet \quad Verb \; NP$, [0,0]
 $VP \rightarrow \bullet \quad Verb \; NP \; PP$, [0,0]
 $VP \rightarrow \bullet \quad Verb \; PP$, [0,0]
 $VP \rightarrow \bullet \quad VP \; PP$, [0,0]

SCANNER

- Applies to states with a part-of-speech category to right of dot
- Incorporates into chart a state corresponding to prediction of a word with particular part-of-speech
- Creates new state from input state with dot advanced over predicted input category
- Unlike CYK, only parts-of-speech of a word that are predicted by some existing state will enter the chart (top-down input)

$$VP
ightarrow ullet Verb \ NP, \ [0,0]$$
 $VP
ightarrow ullet book ullet, \ [0,1]$

Completer

- Applied to state when its dot has reached right end of the rule
- This means that parser has successfully discovered a particular grammatical category over some span of the input
- COMPLETER finds and advances all previously created states that were looking for this category at this position in input
- Creates states copying the older state, advancing dot over expected category, and installing new state in chart

```
NP 	o Det\ Nominal ullet, [1,3] finds state VP 	o Verb ullet NP, [0,1] finds state VP 	o Verb ullet NP\ PP, [0,1]
```

Completer

- Applied to state when its dot has reached right end of the rule
- This means that parser has successfully discovered a particular grammatical category over some span of the input
- COMPLETER finds and advances all previously created states that were looking for this category at this position in input
- Creates states copying the older state, advancing dot over expected category, and installing new state in chart

NP o Det Nominal $ullet$, $[1,3]$			
finds state	VP	\rightarrow	Verb • NP, [0,1]
finds state	VP	\longrightarrow	Verb • NP PP, [0,1]
adds complete state	VP	\longrightarrow	Verb NP •, [0,3]
adds incomplete state	VP	\rightarrow	<i>Verb NP</i> • <i>PP</i> , [0,3]

Nominal → Nominal Noun

Nominal → Nominal PP

 $S \rightarrow NP \ VP$ $S \rightarrow Aux \ NP \ VP$

 $S \rightarrow VP$ $NP \rightarrow Pronoun$ $NP \rightarrow Proper-Noun$ $NP \rightarrow Det\ Nominal$ $Nominal \rightarrow Noun$

We will use the grammar to parse the sentence "Book that flight".

Grammar Rules

Granninai	rtares
	VP o Verb
	VP o Verb NP
	$VP \rightarrow Verb \ NP \ PP$
	$VP \rightarrow Verb PP$
	$VP \rightarrow VP PP$
	PP → Preposition NP
	$Verb \rightarrow book include prefer$

 $Noun \rightarrow book|flight|meal$

 $Det \rightarrow that|this|these$

state	rule	start/end	reason
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet Aux NP VP$	[0,0]	Predictor
S3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	NP → • Pronoun	[0,0]	Predictor
S5	$NP \rightarrow \bullet Proper-Noun$	[0,0]	Predictor
S6	NP ightarrow ullet Det Nominal	[0,0]	Predictor
S7	VP ightarrow ullet Verb	[0,0]	Predictor
S8	VP ightarrow ullet Verb NP	[0,0]	Predictor
S9	$VP \rightarrow \bullet Verb NP PP$	[0,0]	Predictor
S10	$VP \rightarrow \bullet Verb PP$	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

state	rule	start/end	reason
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet Aux NP VP$	[0,0]	Predictor
S3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	NP → • Pronoun	[0,0]	Predictor
S5	$NP \rightarrow \bullet Proper-Noun$	[0,0]	Predictor
S6	NP ightarrow ullet Det Nominal	[0,0]	Predictor
S7	VP ightarrow ullet Verb	[0,0]	Predictor
S8	VP ightarrow ullet Verb NP	[0,0]	Predictor
S9	$VP \rightarrow \bullet Verb NP PP$	[0,0]	Predictor
S10	$VP \rightarrow \bullet Verb PP$	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

state	rule	start/end	reason
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet Aux NP VP$	[0,0]	Predictor
S3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	NP → • Pronoun	[0,0]	Predictor
S5	$NP \rightarrow \bullet Proper-Noun$	[0,0]	Predictor
S6	NP ightarrow ullet Det Nominal	[0,0]	Predictor
S7	VP ightarrow ullet Verb	[0,0]	Predictor
S8	VP ightarrow ullet Verb NP	[0,0]	Predictor
S9	$VP \rightarrow \bullet Verb NP PP$	[0,0]	Predictor
S10	$VP \rightarrow \bullet Verb PP$	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

state	rule	start/end	reason
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet Aux NP VP$	[0,0]	Predictor
S3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	$NP ightarrow \bullet Pronoun$	[0,0]	Predictor
S5	$NP \rightarrow \bullet Proper-Noun$	[0,0]	Predictor
S6	NP ightarrow ullet Det Nominal	[0,0]	Predictor
S7	VP ightarrow ullet Verb	[0,0]	Predictor
S8	VP ightarrow ullet Verb NP	[0,0]	Predictor
S9	$VP \rightarrow \bullet Verb NP PP$	[0,0]	Predictor
S10	$VP \rightarrow \bullet Verb PP$	[0,0]	Predictor
S11	VP → • VP PP	[0,0]	Predictor

state	rule	start/end	reason
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet Aux NP VP$	[0,0]	Predictor
S3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	NP → • Pronoun	[0,0]	Predictor
S5	$NP \rightarrow \bullet Proper-Noun$	[0,0]	Predictor
S6	NP ightarrow ullet Det Nominal	[0,0]	Predictor
S7	VP ightarrow ullet Verb	[0,0]	Predictor
S8	VP ightarrow ullet Verb NP	[0,0]	Predictor
S9	$VP \rightarrow \bullet Verb NP PP$	[0,0]	Predictor
S10	$VP \rightarrow \bullet Verb PP$	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

state	rule	start/end	reason
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet Aux NP VP$	[0,0]	Predictor
S3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	NP → • Pronoun	[0,0]	Predictor
S5	$NP \rightarrow \bullet Proper-Noun$	[0,0]	Predictor
S6	NP ightarrow ullet Det Nominal	[0,0]	Predictor
S7	VP ightarrow ullet Verb	[0,0]	Predictor
S8	VP ightarrow ullet Verb NP	[0,0]	Predictor
S9	$VP \rightarrow \bullet Verb NP PP$	[0,0]	Predictor
S10	$VP \rightarrow \bullet Verb PP$	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

state	rule	start/end	reason
S12	Verb → book •	[0,1]	Scanner
S13	VP o Verb ullet	[0,1]	Completer
S14	$VP \rightarrow Verb \bullet NP$	[0,1]	Completer
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer
S16	$VP \rightarrow Verb \bullet PP$	[0,1]	Completer
S17	$S \rightarrow VP \bullet$	[0,1]	Completer
S18	$VP \rightarrow VP \bullet PP$	[1,1]	Completer
S19	NP → • Pronoun	[1,1]	Predictor
S20	$NP \rightarrow ullet$ Proper-Noun	[1,1]	Predictor
S21	$NP \rightarrow ullet Det Nominal$	[1,1]	Predictor
S22	PP → • Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S12	Verb ightarrow book ullet	[0,1]	Scanner
S13	VP o Verb ullet	[0,1]	Completer
S14	$VP \rightarrow Verb \bullet NP$	[0,1]	Completer
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer
S16	$VP \rightarrow Verb \bullet PP$	[0,1]	Completer
S17	S o VP ullet	[0,1]	Completer
S18	$VP \rightarrow VP \bullet PP$	[1,1]	Completer
S19	$NP \rightarrow ullet Pronoun$	[1,1]	Predictor
S20	$NP \rightarrow ullet$ Proper-Noun	[1,1]	Predictor
S21	$NP \rightarrow ullet Det Nominal$	[1,1]	Predictor
S22	$PP \rightarrow \bullet Prep NP$	[1,1]	Predictor

state	rule	start/end	reason
S12	Verb → book •	[0,1]	Scanner
S13	VP o Verb ullet	[0,1]	Completer
S14	$VP \rightarrow Verb \bullet NP$	[0,1]	Completer
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer
S16	$VP \rightarrow Verb \bullet PP$	[0,1]	Completer
S17	$S \rightarrow VP \bullet$	[0,1]	Completer
S18	$VP \rightarrow VP \bullet PP$	[1,1]	Completer
S19	$NP \rightarrow \bullet Pronoun$	[1,1]	Predictor
S20	$NP \rightarrow ullet$ Proper-Noun	[1,1]	Predictor
S21	$NP \rightarrow ullet Det Nominal$	[1,1]	Predictor
S22	PP → • Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S12	Verb → book •	[0,1]	Scanner
S13	VP o Verb ullet	[0,1]	Completer
S14	$VP \rightarrow Verb \bullet NP$	[0,1]	Completer
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer
S16	$VP \rightarrow Verb \bullet PP$	[0,1]	Completer
S17	S o VP ullet	[0,1]	Completer
S18	$VP \rightarrow VP \bullet PP$	[1,1]	Completer
S19	NP → • Pronoun	[1,1]	Predictor
S20	$NP \rightarrow ullet$ Proper-Noun	[1,1]	Predictor
S21	$NP \rightarrow ullet Det Nominal$	[1,1]	Predictor
S22	PP → • Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S12	Verb → book •	[0,1]	Scanner
S13	VP o Verb ullet	[0,1]	Completer
S14	$VP \rightarrow Verb \bullet NP$	[0,1]	Completer
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer
S16	$VP \rightarrow Verb \bullet PP$	[0,1]	Completer
S17	$S \rightarrow VP \bullet$	[0,1]	Completer
S18	$VP \rightarrow VP \bullet PP$	[1,1]	Completer
S19	$NP \rightarrow ullet Pronoun$	[1,1]	Predictor
S20	$NP \rightarrow ullet$ Proper-Noun	[1,1]	Predictor
S21	$NP \rightarrow ullet Det Nominal$	[1,1]	Predictor
S22	PP → • Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S12	Verb → book •	[0,1]	Scanner
S13	VP o Verb ullet	[0,1]	Completer
S14	$VP \rightarrow Verb \bullet NP$	[0,1]	Completer
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer
S16	$VP \rightarrow Verb \bullet PP$	[0,1]	Completer
S17	$S \rightarrow VP \bullet$	[0,1]	Completer
S18	$VP \rightarrow VP \bullet PP$	[1,1]	Completer
S19	$NP \rightarrow \bullet Pronoun$	[1,1]	Predictor
S20	$NP \rightarrow ullet$ Proper-Noun	[1,1]	Predictor
S21	$NP \rightarrow ullet Det Nominal$	[1,1]	Predictor
S22	PP → • Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S12	Verb → book •	[0,1]	Scanner
S13	VP o Verb ullet	[0,1]	Completer
S14	$VP \rightarrow Verb \bullet NP$	[0,1]	Completer
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer
S16	$VP \rightarrow Verb \bullet PP$	[0,1]	Completer
S17	$S \rightarrow VP \bullet$	[0,1]	Completer
S18	$VP \rightarrow VP \bullet PP$	[1,1]	Completer
S19	NP → • Pronoun	[1,1]	Predictor
S20	$NP \rightarrow ullet$ Proper-Noun	[1,1]	Predictor
S21	$NP \rightarrow ullet Det Nominal$	[1,1]	Predictor
S22	PP → • Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S12	Verb → book •	[0,1]	Scanner
S13	VP o Verb ullet	[0,1]	Completer
S14	$VP \rightarrow Verb \bullet NP$	[0,1]	Completer
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer
S16	$VP \rightarrow Verb \bullet PP$	[0,1]	Completer
S17	S o VP ullet	[0,1]	Completer
S18	$VP \rightarrow VP \bullet PP$	[1,1]	Completer
S19	$NP \rightarrow ullet Pronoun$	[1,1]	Predictor
S20	$NP \rightarrow ullet$ Proper-Noun	[1,1]	Predictor
S21	$NP \rightarrow \bullet \ Det \ Nominal$	[1,1]	Predictor
S22	PP → • Prep NP	[1,1]	Predictor

The PREDICTOR Operator
The SCANNER Operator
The COMPLETER Operator
Earley parsing: example
Comparing Earley and CYK

state	rule	start/end	reason
S23	Det ightarrow that ullet	[1,2]	Scanner
S24	NP → Det • Nominal	[1,2]	Completer
S25	Nominal → • Noun	[2,2]	Predictor
S26	Nominal → • Nominal Noun	[2,2]	Predictor
S27	Nominal → • Nominal PP	[2,2]	Predictor

state	rule	start/end	reason
S23	Det ightarrow that ullet	[1,2]	Scanner
S24	NP → Det • Nominal	[1,2]	Completer
S25	Nominal → • Noun	[2,2]	Predictor
S26	Nominal → • Nominal Noun	[2,2]	Predictor
S27	Nominal → • Nominal PP	[2,2]	Predictor

state	rule	start/end	reason
S23	Det ightarrow that ullet	[1,2]	Scanner
S24	NP o Det ullet Nominal	[1,2]	Completer
S25	Nominal $ o ullet$ Noun	[2,2]	Predictor
S26	Nominal $ ightarrow ullet$ Nominal Noun	[2,2]	Predictor
S27	Nominal → • Nominal PP	[2,2]	Predictor

The PREDICTOR Operator
The SCANNER Operator
The COMPLETER Operator
Earley parsing: example
Comparing Earley and CYK

state	rule	start/end	reason
S23	Det ightarrow that ullet	[1,2]	Scanner
S24	NP ightarrow Det ullet Nominal	[1,2]	Completer
S25	Nominal → • Noun	[2,2]	Predictor
S26	Nominal → • Nominal Noun	[2,2]	Predictor
S27	Nominal → • Nominal PP	[2,2]	Predictor

state	rule	start/end	reason
S28	Noun → • flight	[2,3]	Scanner
S29	Nominal → Noun •	[2,3]	Completer
S30	NP o Det Nominal ullet	[1,3]	Completer
S31	Nominal → Nominal • Noun	[2,3]	Completer
S32	Nominal \rightarrow Nominal $ullet$ PP	[2,3]	Completer
S33	VP → Verb NP •	[0,3]	Completer
S34	VP o Verb NP ullet PP	[0,3]	Completer
S35	PP → Prep • NP	[3,3]	Predictor
S36	$S \rightarrow VP \bullet$	[0,3]	Completer
S37	Nominal → VP • PP	[0,3]	Completer

state	rule	start/end	reason
S28	Noun → • flight	[2,3]	Scanner
S29	Nominal → Noun •	[2,3]	Completer
S30	NP ightarrow Det Nominal ullet	[1,3]	Completer
S31	Nominal → Nominal • Noun	[2,3]	Completer
S32	Nominal \rightarrow Nominal $ullet$ PP	[2,3]	Completer
S33	VP → Verb NP •	[0,3]	Completer
S34	VP o Verb NP ullet PP	[0,3]	Completer
S35	PP → Prep • NP	[3,3]	Predictor
S36	$S \rightarrow VP \bullet$	[0,3]	Completer
S37	Nominal → VP • PP	[0,3]	Completer

state	rule	start/end	reason
S28	Noun → • flight	[2,3]	Scanner
S29	Nominal → Noun •	[2,3]	Completer
S30	NP ightarrow Det Nominal ullet	[1,3]	Completer
S31	Nominal → Nominal • Noun	[2,3]	Completer
S32	Nominal → Nominal • PP	[2,3]	Completer
S33	VP → Verb NP •	[0,3]	Completer
S34	VP o Verb NP ullet PP	[0,3]	Completer
S35	PP → Prep • NP	[3,3]	Predictor
S36	S o VP ullet	[0,3]	Completer
S37	Nominal → VP • PP	[0,3]	Completer

state	rule	start/end	reason
S28	Noun → • flight	[2,3]	Scanner
S29	Nominal → Noun •	[2,3]	Completer
S30	NP ightarrow Det Nominal ullet	[1,3]	Completer
S31	Nominal → Nominal • Noun	[2,3]	Completer
S32	Nominal \rightarrow Nominal $ullet$ PP	[2,3]	Completer
S33	$\mathit{VP} ightarrow \mathit{Verb} \ \mathit{NP} \ ullet$	[0,3]	Completer
S34	VP ightarrow Verb NP ullet PP	[0,3]	Completer
S35	PP → Prep • NP	[3,3]	Predictor
S36	S o VP ullet	[0,3]	Completer
S37	Nominal → VP • PP	[0,3]	Completer

The Earley Algorithm

function EARLEY-PARSE(words, grammar) **returns** chart

```
ENQUEUE((\gamma \rightarrow \bullet S, [0,0]), chart[0])
for i \leftarrow from 0 to LENGTH(words) do
 for each state in chart[i] do
   if INCOMPLETE?(state) and
            NEXT-CAT(state) is not a part of speech then
      Predictor(state)
   elseif INCOMPLETE?(state) and
            NEXT-CAT(state) is a part of speech then
       SCANNER(state)
   else
      COMPLETER(state)
 end
end
return(chart)
```

The Earley Algorithm

```
procedure PREDICTOR((A \rightarrow \alpha \bullet B \beta, [i, j]))
   for each (B \rightarrow \gamma) in GRAMMAR-RULES-FOR(B, grammar) do
         ENOUEUE((B \rightarrow \bullet \gamma, [i, i]), chart[i])
   end
procedure SCANNER((A \rightarrow \alpha \bullet B \beta, [i, j]))
   if B \subset PARTS-OF-SPEECH(word[i]) then
        ENQUEUE((B \rightarrow word[j], [j, j+1]), chart[j+1])
procedure COMPLETER((B \rightarrow \gamma \bullet, [j,k]))
   for each (A \rightarrow \alpha \bullet B \beta, [i, j]) in chart [j] do
         ENQUEUE((A \rightarrow \alpha B \bullet \beta, [i,k]), chart[k])
   end
```

Parsing the Input

As with CKY we have formulated a recognizer. We can change it to a parser by adding backpointers so that each state knows where it came from.

Chart[1]	S12	Verb → book •	[0,1]	Scanner
Chart[2]	S23	Det ightarrow that ullet	[1,2]	Scanner
Chart[3]	S28	Noun $ o$ flight $ullet$	[2,3]	Scanner
	S29	Nominal o Noun ullet	[2,3]	(S28)
	S30	$NP o Det\ Nominal\ ullet$	[1,3]	(S23, S29)
	S33	VP o Verb NP ullet	[0,3]	(S12, S30)
	S36	$S \rightarrow VP \bullet$	[0,3]	(S33)

Comparing Earley and CYK

- For such a simple example, there seems to be a lot of useless stuff in the chart.
- We are predicting things inconsistent with the input!
- That's the flipside to the CKY problem.

Comparing Earley and CYK

- For such a simple example, there seems to be a lot of useless stuff in the chart.
- We are predicting things inconsistent with the input!
- That's the flipside to the CKY problem.

Did we solve ambiguity?

Comparing Earley and CYK

- For such a simple example, there seems to be a lot of useless stuff in the chart.
- We are predicting things inconsistent with the input!
- That's the flipside to the CKY problem.

Did we solve ambiguity? Both CKY and Earley will result in multiple S structures for the [0, N] table entry. They efficiently store the sub-parts shared between multiple parses but neither can tell us which one is right.

Summary

- The Earley algorithm uses dynamic programming to implement a top-down search strategy.
- Single left to right pass that fills chart with entries.
- Dotted rule represents progress in recognizing RHS of rule.
- Algorithm always moves forward, never backtracks to previous chart entry, once it has moved on.
- States are processed using PREDICTOR, COMPLETER, SCANNER operations.

Reading: Same as for Lecture 17

Next lecture: Resolving ambiguity using statistical parsing.