Limitations of regular languages

Alex Simpson

School of Informatics University of Edinburgh als@inf.ed.ac.uk

2 October, 2012

Showing a language isn't regular

3 Applying the pumping lemma

Non-regular languages

We have hinted before that not all languages are regular. E.g.

- The language $\{a^n b^n \mid n \ge 0\}$.
- The language of all *well-matched* sequences of brackets (,). N.B. A sequence x is well-matched if no initial subsequence y of x contains more ')' than '('.

But how do we know these languages aren't regular?

And can we come up with a general technique for proving the non-regularity of languages?

The basic intuition: DFAs can't count!

Consider $L = \{a^n b^n \mid n \ge 0\}$. Just suppose, hypothetically, there were some DFA M with $\mathcal{L}(M) = L$.

Suppose furthermore that M had just processed a^n , and some continuation b^m was to follow.

Intuition: M would need to have *counted* the number of a's, in order to know how many b's to expect.

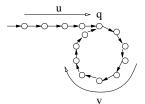
More precisely, let q_n denote the state of M after processing a^n . Then for any $m \neq n$, the states q_m, q_n must be different, since b^m takes us to an accepting state from q_m , but not from q_n .

In other words, M would need infinitely many states, one for each natural number. Contradiction!

Put slightly differently...

Suppose there were some DFA M for $L = \{a^n b^n \mid n \ge 0\}$. Then M would have some finite number of states, say k.

Now consider what happens when we feed M with the string a^k . It passes through a sequence of k + 1 states (including the initial state). So there *must* be some state q that's visited twice or more:



This means the string a^k can be decomposed as *uvw*, where

- *u* takes *M* from the initial state to *q*,
- v takes M once round the loop from q to q,
- w is whatever is left of a^k after uv.

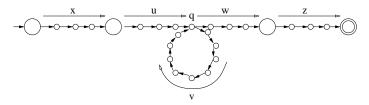
(Note that u and w might be ϵ , but v definitely isn't.)

More generally...

If *L* is *any* regular language, we can pick *some* corresponding DFA *M*, and it will have some number of states, say *k*.

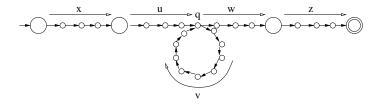
Not only must every string of length $\geq k$ cause a revisited state — so must every substring of length $\geq k$ within such a string.

Indeed, consider what happens when we run M on a string $xyz \in L$, where $|y| \ge k$. There must be at least one state q we visit twice in the course of processing y:



(There may be other 'revisited states' not indicated here.)

The idea of 'pumping'



So y can be decomposed as uvw, where

- xu takes M from the initial state to q,
- $v \neq \epsilon$ takes *M* once round the loop from *q* to *q*,
- wz takes M from q to an accepting state.

But now M will be oblivious to whether, or how many times, we go round the v-loop!

So we can 'pump in' as many copies of the substring v as we like, knowing that we'll still end in an accepting state.

The pumping lemma: official form

The pumping lemma basically summarizes what we've just said.

Pumping Lemma. Suppose *L* is a regular language. Then *L* has the following property.

(P) There exists $k \ge 0$ such that, for all strings x, y, zwith $xyz \in L$ and $|y| \ge k$, there exist strings u, v, w such that $y = uvw, v \ne \epsilon$, and for every $i \ge 0$ we have $xuv^i wz \in L$.

Three clicker questions

For each of the following languages over $\{a, b\}$, decide whether they are regular or not.

Press A for regular, B for non-regular.

- Strings with an odd number of *a*'s and an even number of *b*'s.
- 2 Strings containing strictly more a's than b's.
- 3 Strings such that (no. of a's) * (no. of b's) \equiv 6 (mod. 24)

The pumping lemma: contrapositive form

Since we want to use the pumping lemma to show a language *isn't* regular, we usually apply it in the following equivalent but back-to-front form.

Suppose L is a language for which the following property holds:

 $(\neg P)$ For all $k \ge 0$, there exist strings x, y, z with $xyz \in L$ and $|y| \ge k$ such that, for every decomposition of y as y = uvw where $v \ne \epsilon$, there is some $i \ge 0$ for which $xuv^i wz \notin L$.

Then L is not a regular language.

N.B. The pumping lemma can only be used to show a language isn't regular. Showing L satisfies (P) doesn't prove L is regular!

To show that a language *is* regular, give some DFA or NFA or regular expression that defines it.

The pumping lemma: a user's guide

So to show some language L is not regular, it's enough to show that L satisfies $(\neg P)$.

Note that $(\neg P)$ is quite a complex statement: $\forall \cdots \exists \cdots \forall \cdots \exists \cdots$.

It's helpful to think in terms of how you would refute an opponent who claimed to have a DFA for L.

We'll look at a simple example first, then offer some advice on the general pattern of argument.

Example 1

```
Consider L = \{a^n b^n \mid n \ge 0\}.
We show that L satisfies (\neg P).
Suppose k > 0.
(k is chosen by 'opponent' — we just have to cope.)
Consider the strings x = \epsilon, y = a^k, z = b^k. Note that xyz \in L and
|y| > k as required.
(y is cunningly chosen by 'us'.)
Suppose now we're given a decomposition of y as uvw with v \neq \epsilon.
(u, v, w chosen by 'opponent' — we have to cope.)
Let i = 0 Then uv^i w = uw = a^l for some l < k. So
xuv^i wz = a^l b^k \notin L, and we win!
(i chosen by 'us'.)
```

Thus L satisfies $(\neg P)$, so L isn't regular.

Use of pumping lemma: general pattern

- The opponent proposes a number k ≥ 0.
 You don't get to choose k you have to cope with what the opponent throws at you.
- You respond with a cunning choice of strings x, y, z, which might depend on k. These must satisfy xyz ∈ L and |y| ≥ k. Also, y should be chosen to 'disallow pumping' ...
- The opponent picks a decomposition of y as uvw with $v \neq \epsilon$. Again, you just have to cope with his choice.
- Finally, you have to choose i (≠ 1) such that xuvⁱ wz ∉ L.
 Here i might depend on all the previous data.

Example 2

Consider $L = \{a^{n^2} \mid n \ge 0\}$. We show that L satisfies $(\neg P)$:

Suppose $k \ge 0$. Let $x = a^{k^2-k}$, $y = a^k$, $z = \epsilon$, so $xyz = a^{k^2} \in L$. Given any splitting of y as uvw with $v \ne \epsilon$, we have $1 \le |v| \le k$. So taking i = 2, we have $xuv^2wz = a^n$ where $k^2 + 1 \le n \le k^2 + k$. But there are no perfect squares between k^2 and $k^2 + 2k + 1$. So n isn't a perfect square. Thus $xuv^2wz \notin L$.

Thus L satisfies $(\neg P)$, so L isn't regular.

Reading and prospectus

Relevant reading: Kozen chapters 11, 12.

This concludes the part of the course on regular languages.

Next time, we start on the next level up in the Chomsky hierarchy: context-free languages.