
Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Regular expressions and Kleene’s theorem
Informatics 2A: Lecture 5

Alex Simpson

School of Informatics
University of Edinburgh
als@inf.ed.ac.uk

27 September, 2012

1 / 23

als@inf.ed.ac.uk

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

1 Closure properties of regular languages
ε-NFAs
Closure under concatenation
Closure under Kleene star

2 Regular expressions
From regular expressions to regular languages

3 Kleene’s theorem and Kleene algebra
Kleene algebra
From DFAs to regular expressions
Appendix: from NFAs to regular expressions

2 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Clicker meta-question 1

What would you consider to be the optimal number of clicker
questions per lecture? (Not counting meta-questions like this one.)

A: 0

B: 1–2

C: 3–4

D: ≥5

3 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Clicker meta-question 2

How challenging would you like clicker questions to be?

A: Mainly simple questions to check basic understanding

B: Mainly challenging questions

C: A mixture of simple and challenging questions

D: Whatever seems most appropriate for the material

4 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

ε-NFAs
Closure under concatenation
Closure under Kleene star

Closure properties of regular languages

We’ve seen that if both L1 and L2 are regular languages, so is
L1 ∪ L2.

We sometimes express this by saying that regular languages
are closed under the ‘union’ operation. (‘Closed’ used here in
the sense of ‘self-contained’.)

We will show that regular languages are closed under other
operations too: Concatenation: L1.L2 and Kleene star: L∗

For these, we’ll need to work with a minor variation on NFAs.

All this will lead us to another way of defining regular
languages: via regular expressions.

5 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

ε-NFAs
Closure under concatenation
Closure under Kleene star

Concatenation and Kleene star

Concatenation: write L1.L2 for the language

{xy | x ∈ L1, y ∈ L2}

E.g. if L1 = {aaa} and L2 = {b, c} then L1.L2 is the language
{aaab, aaac}.

Kleene star: let L∗ denote the language

{ε} ∪ L ∪ L.L ∪ L.L.L ∪ . . .

E.g. if L3 = {aaa, b} then L∗3 contains strings like aaaaaa, bbbbb,
baaaaaabbaaa, etc.
More precisely, L∗3 contains all strings over {a, b} in which the
letter a always appears in sequences of length some multiple of 3

6 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

ε-NFAs
Closure under concatenation
Closure under Kleene star

Clicker question

Consider the language over the alphabet {a, b, c}

L = {x | x starts with a and ends with c}

Which of the following strings is not valid for the language L.L ?

A: abcabc

B: acacac

C: abcbcac

D: abcbacbc

7 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

ε-NFAs
Closure under concatenation
Closure under Kleene star

Clicker question

Consider the (same) language over the alphabet {a, b, c}

L = {x | x starts with a and ends with c}

Which of the following strings is not valid for the language L∗ ?

A: ε

B: acaca

C: abcbc

D: acacacacac

8 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

ε-NFAs
Closure under concatenation
Closure under Kleene star

NFAs with ε-transitions

We can vary the definition of NFA by also allowing transitions
labelled with the special symbol ε (not a symbol in Σ).

The automaton may (but doesn’t have to) perform an ε-transition
at any time, without reading an input symbol.

This is quite convenient: for instance, we can turn any NFA into an
ε-NFA with just one start state and one accepting state:

ε

ε ε
ε

ε

ε

.

.

.

(Add ε-transitions from new start state to each state in S , and
from each state in F to new accepting state.)

9 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

ε-NFAs
Closure under concatenation
Closure under Kleene star

Equivalence to ordinary NFAs

Allowing ε-transitions is just a convenience: it doesn’t
fundamentally change the power of NFAs.

If N = (Q,∆, S ,F) is an ε-NFA, we can convert N to an ordinary
NFA with the same associated language, by simply ‘expanding’ ∆
and S to allow for silent ε-transitions.

Formally, the ε-closure of a transition relation ∆ ⊆ Q×(Σ∪{ε})×Q
is the smallest relation ∆ that contains ∆ and satisfies:

if (q, u, q′) ∈ ∆ and (q′, ε, q′′) ∈ ∆ then (q, u, q′′) ∈ ∆;
if (q, ε, q′) ∈ ∆ and (q′, u, q′′) ∈ ∆ then (q, u, q′′) ∈ ∆.

Likewise, the ε-closure of S under ∆ is the smallest set of states
S∆ that contains S and satisfies:

if q ∈ S∆ and (q, ε, q′) ∈ ∆ then q′ ∈ S∆.

We can then replace the ε-NFA (Q,∆, S ,F) with the ordinary NFA

(Q, ∆ ∩ (Q × Σ× Q), S∆, F)

10 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

ε-NFAs
Closure under concatenation
Closure under Kleene star

Concatenation of regular languages

We can use ε-NFAs to show that regular languages are closed
under the concatenation operation:

L1.L2 = {xy | x ∈ L1, y ∈ L2}

If L1, L2 are any regular languages, choose ε-NFAs N1,N2 that
define them. As noted earlier, we can pick N1 and N2 to have just
one start state and one accepting state.

Now hook up N1 and N2 like this:

N1 N2ε

Clearly, this NFA corresponds to the language L1.L2.

To ponder: do we need the ε-transition in the middle?
11 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

ε-NFAs
Closure under concatenation
Closure under Kleene star

Kleene star

Similarly, we can now show that regular languages are closed under
the Kleene star operation:

L∗ = {ε} ∪ L ∪ L.L ∪ L.L.L ∪ . . .

For suppose L is represented by an ε-NFA N with one start state
and one accepting state. Consider the following ε-NFA:

 N
ε

ε

Clearly, this ε-NFA corresponds to the language L∗.

12 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra
From regular expressions to regular languages

Regular expressions

We’ve been looking at ways of specifying regular languages via
machines (often given by diagrams). But it’s also useful to have
more textual ways of defining languages.

A regular expression is a written mathematical expression that
defines a language over a given alphabet Σ.

The basic regular expressions are

∅ ε a (for a ∈ Σ)

From these, more complicated regular expressions can be built
up by (repeatedly) applying the binary operations +, . and the
unary operation ∗. Example: (a.b + ε)∗ + a

We allow brackets to indicate priority. In the absence of brackets,
∗ binds more tightly than ., which itself binds more tightly than +.

So a + b.a∗ means a + (b.(a∗))

Also the dot is often omitted: ab means a.b 13 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra
From regular expressions to regular languages

How do regular expressions define languages?

A regular expression is itself just a written expression (actually in
some context-free ‘meta-language’). However, every regular
expression α over Σ can be seen as defining an actual language
L(α) ⊆ Σ∗ in the following way:

L(∅) = ∅, L(ε) = {ε}, L(a) = {a}.
L(α + β) = L(α) ∪ L(β)

L(α.β) = L(α) .L(β)

L(α∗) = L(α)∗

Example: a + ba∗ defines the language {a, b, ba, baa, baaa, . . .}.
The languages defined by ∅, ε, a are obviously regular.

What’s more, we’ve seen that regular languages are closed under
union, concatenation and Kleene star.

This means every regular expression defines a regular language.
(Proof by induction on the size of the regular expression.)

14 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra
From regular expressions to regular languages

Clicker question

Consider again the language

{x ∈ {0, 1}∗ | x contains an even number of 0’s}

Which of the following regular expressions is not a possible
definition of this language?

A: (1∗01∗01∗)∗

B: (1∗01∗0)∗1∗

C: 1∗(01∗0)∗1∗

D: (1 + 01∗0)∗

15 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Kleene algebra
From DFAs to regular expressions
Appendix: from NFAs to regular expressions

Kleene’s theorem

We’ve seen that every regular expression defines a regular language.

The main goal of today’s lecture is to show the converse, that
every regular language can be defined by a regular expression. For
this purpose, we introduce Kleene algebra: the algebra of regular
expressions.

The equivalence between regular languages and expressions is:
Kleene’s theorem

DFAs and regular expressions give rise to exactly the
same class of languages (the regular languages).

As we’ve already seen, NFAs (with or without ε-transitions) also
give rise to this class of languages.

So the evidence is mounting that the class of regular languages is
mathematically a very ‘natural’ class to consider.

16 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Kleene algebra
From DFAs to regular expressions
Appendix: from NFAs to regular expressions

Kleene algebra

Regular expressions give a textual way of specifying regular
languages. This is useful e.g. for communicating regular languages
to a computer.

Another benefit: regular expressions can be manipulated using
algebraic laws (Kleene algebra). For example:

α + (β + γ) ≡ (α + β) + γ α + β ≡ β + α
α + ∅ ≡ α α + α ≡ α
α(βγ) ≡ (αβ)γ εα ≡ αε ≡ α

α(β + γ) ≡ αβ + αγ (α + β)γ ≡ αγ + βγ
∅α ≡ α∅ ≡ ∅ ε + αα∗ ≡ ε + α∗α ≡ α∗

Often these can be used to simplify regular expressions down to
more pleasant ones.

17 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Kleene algebra
From DFAs to regular expressions
Appendix: from NFAs to regular expressions

Other reasoning principles

Let’s write α ≤ β to mean L(α) ⊆ L(β) (or equivalently
α + β ≡ β). Then

αγ + β ≤ γ ⇒ α∗β ≤ γ
β + γα ≤ γ ⇒ βα∗ ≤ γ

Arden’s rule: Given an equation of the form X = αX + β, its
smallest solution is X = α∗β.

What’s more, if ε 6∈ L(α), this is the only solution.

Intriguing fact: The rules on this slide and the last form a complete
set of reasoning principles, in the sense that if L(α) = L(β), then
‘α ≡ β’ is provable using these rules. (Beyond scope of Inf2A.)

18 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Kleene algebra
From DFAs to regular expressions
Appendix: from NFAs to regular expressions

DFAs to regular expressions

0

1 1

0

p q

For each state a, let Xa stand for the set of strings that take us
from a to an accepting state. Then we can write some equations:

Xp = 1.Xp + 0.Xq + ε

Xq = 1.Xq + 0.Xp

Solve by eliminating one variable at a time:

Xq = 1∗0.Xp by Arden’s rule

So Xp = 1.Xp + 01∗0Xp + ε

= (1 + 01∗0)Xp + ε

So Xp = (1 + 01∗0)∗ by Arden’s rule
19 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Kleene algebra
From DFAs to regular expressions
Appendix: from NFAs to regular expressions

General (non-examinable) proof of Kleene’s theorem: From
NFAs to regular expressions

Given an NFA N = (Q,∆, S ,F) (without ε-transitions), we’ll show
how to define a regular expression defining the same language as N.

In fact, to build this up, we’ll construct a three-dimensional array
of regular expressions αX

uv : one for every u ∈ Q, v ∈ Q,X ⊆ Q.

Informally, αX
uv will define the set of strings that get us from u to

v allowing only intermediate states in X .

We shall build suitable regular expressions αX
u,v by working our way

from smaller to larger sets X .

At the end of the day, the language defined by N will be given by
the sum (+) of the languages αQ

sf for all states s ∈ S and f ∈ F .

20 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Kleene algebra
From DFAs to regular expressions
Appendix: from NFAs to regular expressions

Construction of αX
uv

Here’s how the regular expressions αX
uv are built up.

If X = ∅, let a1, . . . , ak be all the symbols a such that
(u, a, v) ∈ ∆. Two subcases:

If u 6= v , take α∅uv = a1 + · · ·+ ak

If u = v , take α∅uv = (a1 + · · ·+ ak) + ε

Convention: if k = 0, take ‘a1 + . . .+ ak ’ to mean ∅.

If X 6= ∅, choose any q ∈ X , let Y = X − {q}, and define

αX
uv = αY

uv + αY
uq(αY

qq)∗αY
qv

Applying these rules repeatedly gives us αX
u,v for every u, v ,X .

21 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Kleene algebra
From DFAs to regular expressions
Appendix: from NFAs to regular expressions

NFAs to regular expressions: tiny example

Let’s revisit our old friend:

0

1 1

0

p q

Here p is the only start state and the only accepting state.
By the rules on the previous slide:

α
{p,q}
p,p = α

{p}
p,p + α

{p}
p,q (α

{p}
q,q)∗α

{p}
q,p

Now by inspection (or by the rules again), we have

α
{p}
p,p = 1∗ α

{p}
p,q = 1∗0

α
{p}
q,q = 1 + 01∗0 α

{p}
q,p = 01∗

So the required regular expression is

1∗ + 1∗0(1 + 01∗0)∗01∗ (A bit messy!)
22 / 23

Closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Kleene algebra
From DFAs to regular expressions
Appendix: from NFAs to regular expressions

Reading

Relevant reading:

Regular expressions: Kozen chapters 7,8; J & M chapter 2.1.
(Both texts actually discuss more general ‘patterns’ — see
next lecture.)

From regular expressions to NFAs: Kozen chapter 8; J & M
chapter 2.3.

Kleene algebra: Kozen chapter 9, 10.

From NFAs to regular expressions: Kozen chapter 9.

Next time: Some applications of all this theory.

Pattern matching

Lexical analysis

23 / 23

	Closure properties of regular languages
	-NFAs
	Closure under concatenation
	Closure under Kleene star

	Regular expressions
	From regular expressions to regular languages

	Kleene's theorem and Kleene algebra
	Kleene algebra
	From DFAs to regular expressions
	Appendix: from NFAs to regular expressions

