Regular expressions and Kleene's theorem Informatics 2A: Lecture 5

Alex Simpson

School of Informatics University of Edinburgh als@inf.ed.ac.uk

27 September, 2012

1 Closure properties of regular languages

- ϵ -NFAs
- Closure under concatenation
- Closure under Kleene star

2 Regular expressions

• From regular expressions to regular languages

8 Kleene's theorem and Kleene algebra

- Kleene algebra
- From DFAs to regular expressions
- Appendix: from NFAs to regular expressions

Clicker meta-question 1

What would you consider to be the optimal number of clicker questions per lecture? (Not counting meta-questions like this one.)

A: 0 B: 1–2 C: 3–4 D: >5

Clicker meta-question 2

How challenging would you like clicker questions to be?

- A: Mainly simple questions to check basic understanding
- B: Mainly challenging questions
- C: A mixture of simple and challenging questions
- D: Whatever seems most appropriate for the material

 ϵ -NFAs Closure under concatenation Closure under Kleene star

Closure properties of regular languages

- We've seen that if both L_1 and L_2 are regular languages, so is $L_1 \cup L_2$.
- We sometimes express this by saying that regular languages are closed under the 'union' operation. ('Closed' used here in the sense of 'self-contained'.)
- We will show that regular languages are closed under other operations too: Concatenation: L₁.L₂ and Kleene star: L* For these, we'll need to work with a minor variation on NFAs.
- All this will lead us to another way of defining regular languages: via regular expressions.

e-NFAs Closure under concatenation Closure under Kleene star

Concatenation and Kleene star

• Concatenation: write $L_1.L_2$ for the language

$$\{xy \mid x \in L_1, y \in L_2\}$$

E.g. if $L_1 = \{aaa\}$ and $L_2 = \{b, c\}$ then $L_1.L_2$ is the language $\{aaab, aaac\}$.

• Kleene star: let L^* denote the language

 $\{\epsilon\} \cup L \cup L.L \cup L.L.L \cup \ldots$

E.g. if $L_3 = \{aaa, b\}$ then L_3^* contains strings like *aaaaaa*, *bbbbb*, *baaaaaabbaaa*, etc.

More precisely, L_3^* contains all strings over $\{a, b\}$ in which the letter *a* always appears in sequences of length some multiple of 3

e-NFAs Closure under concatenation Closure under Kleene star

Clicker question

Consider the language over the alphabet $\{a, b, c\}$

 $L = \{x \mid x \text{ starts with } a \text{ and ends with } c\}$

Which of the following strings is *not* valid for the language L.L?

- A: abcabc
- B: acacac
- C: abcbcac
- D: abcbacbc

e-NFAs Closure under concatenation Closure under Kleene star

Clicker question

Consider the (same) language over the alphabet $\{a, b, c\}$

$$L = \{x \mid x \text{ starts with } a \text{ and ends with } c\}$$

Which of the following strings is *not* valid for the language L^* ?

- **Α**: *ϵ*
- B: acaca
- C: abcbc
- D: acacacacac

ε-NFAs Closure under concatenation Closure under Kleene star

NFAs with ϵ -transitions

We can vary the definition of NFA by also allowing transitions labelled with the special symbol ϵ (not a symbol in Σ).

The automaton may (but doesn't have to) perform an ϵ -transition at any time, without reading an input symbol.

This is quite convenient: for instance, we can turn any NFA into an ϵ -NFA with just one start state and one accepting state:

(Add ϵ -transitions from new start state to each state in *S*, and from each state in *F* to new accepting state.)

 ϵ -NFAs Closure under concatenation Closure under Kleene star

Equivalence to ordinary NFAs

Allowing ϵ -transitions is just a convenience: it doesn't fundamentally change the power of NFAs.

If $N = (Q, \Delta, S, F)$ is an ϵ -NFA, we can convert N to an ordinary NFA with the same associated language, by simply 'expanding' Δ and S to allow for silent ϵ -transitions.

Formally, the ϵ -closure of a transition relation $\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ is the smallest relation $\overline{\Delta}$ that contains Δ and satisfies:

• if $(q, u, q') \in \overline{\Delta}$ and $(q', \epsilon, q'') \in \underline{\Delta}$ then $(q, u, q'') \in \overline{\Delta}$;

• if $(q, \epsilon, q') \in \Delta$ and $(q', u, q'') \in \overline{\Delta}$ then $(q, u, q'') \in \overline{\Delta}$. Likewise, the ϵ -closure of S under Δ is the smallest set of states \overline{S}_{Δ} that contains S and satisfies:

• if $q \in \overline{S}_{\Delta}$ and $(q, \epsilon, q') \in \Delta$ then $q' \in \overline{S}_{\Delta}$. We can then replace the ϵ -NFA (Q, Δ, S, F) with the ordinary NFA

$$(Q, \overline{\Delta} \cap (Q \times \Sigma \times Q), \overline{S}_{\Delta}, F)$$

Concatenation of regular languages

We can use ϵ -NFAs to show that regular languages are closed under the concatenation operation:

$$L_1.L_2 = \{xy \mid x \in L_1, y \in L_2\}$$

If L_1, L_2 are any regular languages, choose ϵ -NFAs N_1, N_2 that define them. As noted earlier, we can pick N_1 and N_2 to have just one start state and one accepting state.

Now hook up N_1 and N_2 like this:

Clearly, this NFA corresponds to the language $L_1.L_2$. To ponder: do we need the ϵ -transition in the middle?

Kleene star

Similarly, we can now show that regular languages are closed under the Kleene star operation:

$$L^* = \{\epsilon\} \cup L \cup L.L \cup L.L \cup \dots$$

For suppose *L* is represented by an ϵ -NFA *N* with one start state and one accepting state. Consider the following ϵ -NFA:

Clearly, this ϵ -NFA corresponds to the language L^* .

Regular expressions

We've been looking at ways of specifying regular languages via machines (often given by diagrams). But it's also useful to have more textual ways of defining languages.

A regular expression is a written mathematical expression that defines a language over a given alphabet Σ .

• The basic regular expressions are

\emptyset ϵ a (for $a \in \Sigma$)

• From these, more complicated regular expressions can be built up by (repeatedly) applying the binary operations +,. and the unary operation *. Example: $(a.b + \epsilon)^* + a$

We allow brackets to indicate priority. In the absence of brackets,

 st binds more tightly than ., which itself binds more tightly than +.

So $a + b.a^*$ means $a + (b.(a^*))$

Also the dot is often omitted: *ab* means *a*.*b*

How do regular expressions define languages?

A regular expression is itself just a written expression (actually in some context-free 'meta-language'). However, every regular expression α over Σ can be seen as defining an actual language $\mathcal{L}(\alpha) \subseteq \Sigma^*$ in the following way:

•
$$\mathcal{L}(\emptyset) = \emptyset$$
, $\mathcal{L}(\epsilon) = \{\epsilon\}$, $\mathcal{L}(a) = \{a\}$.

•
$$\mathcal{L}(\alpha + \beta) = \mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$$

•
$$\mathcal{L}(\alpha.\beta) = \mathcal{L}(\alpha) \cdot \mathcal{L}(\beta)$$

•
$$\mathcal{L}(\alpha^*) = \mathcal{L}(\alpha)^*$$

Example: $a + ba^*$ defines the language $\{a, b, ba, baa, baaa, \ldots\}$.

The languages defined by \emptyset, ϵ, a are obviously regular.

What's more, we've seen that regular languages are closed under union, concatenation and Kleene star.

This means every regular expression defines a regular language. (Proof by induction on the size of the regular expression.)

Clicker question

Consider again the language

 ${x \in {\{0,1\}}^* \mid x \text{ contains an even number of 0's}}$

Which of the following regular expressions is *not* a possible definition of this language?

A: (1*01*01*)* B: (1*01*0)*1* C: 1*(01*0)*1* D: (1+01*0)*

Kleene's theorem

We've seen that every regular expression defines a regular language.

The main goal of today's lecture is to show the converse, that every regular language can be defined by a regular expression. For this purpose, we introduce Kleene algebra: the algebra of regular expressions.

The equivalence between regular languages and expressions is: Kleene's theorem

DFAs and regular expressions give rise to exactly the same class of languages (the regular languages).

As we've already seen, NFAs (with or without ϵ -transitions) also give rise to this class of languages.

So the evidence is mounting that the class of regular languages is mathematically a very 'natural' class to consider.

Kleene algebra From DFAs to regular expressions Appendix: from NFAs to regular expressions

Kleene algebra

Regular expressions give a textual way of specifying regular languages. This is useful e.g. for communicating regular languages to a computer.

Another benefit: regular expressions can be manipulated using algebraic laws (Kleene algebra). For example:

$$\begin{array}{rcl} \alpha + (\beta + \gamma) &\equiv (\alpha + \beta) + \gamma & \alpha + \beta &\equiv \beta + \alpha \\ \alpha + \emptyset &\equiv \alpha & \alpha + \alpha &\equiv \alpha \\ \alpha(\beta\gamma) &\equiv (\alpha\beta)\gamma & \epsilon\alpha &\equiv \alpha\epsilon &\equiv \alpha \\ \alpha(\beta + \gamma) &\equiv \alpha\beta + \alpha\gamma & (\alpha + \beta)\gamma &\equiv \alpha\gamma + \beta\gamma \\ \emptyset\alpha &\equiv \alpha\emptyset &\equiv \emptyset & \epsilon + \alpha\alpha^* &\equiv \epsilon + \alpha^*\alpha \equiv \alpha^* \end{array}$$

Often these can be used to simplify regular expressions down to more pleasant ones.

Kleene algebra From DFAs to regular expressions Appendix: from NFAs to regular expressions

Other reasoning principles

Let's write $\alpha \leq \beta$ to mean $\mathcal{L}(\alpha) \subseteq \mathcal{L}(\beta)$ (or equivalently $\alpha + \beta \equiv \beta$). Then

$$\begin{array}{rcl} \alpha\gamma+\beta\leq\gamma &\Rightarrow& \alpha^*\beta\leq\gamma\\ \beta+\gamma\alpha\leq\gamma &\Rightarrow& \beta\alpha^*\leq\gamma \end{array}$$

Arden's rule: Given an equation of the form $X = \alpha X + \beta$, its smallest solution is $X = \alpha^* \beta$.

What's more, if $\epsilon \notin \mathcal{L}(\alpha)$, this is the *only* solution.

Intriguing fact: The rules on this slide and the last form a complete set of reasoning principles, in the sense that if $\mathcal{L}(\alpha) = \mathcal{L}(\beta)$, then ' $\alpha \equiv \beta$ ' is provable using these rules. (Beyond scope of Inf2A.)

Kleene algebra From DFAs to regular expressions Appendix: from NFAs to regular expressions

DFAs to regular expressions

For each state a, let X_a stand for the set of strings that take us from a to an accepting state. Then we can write some equations:

$$X_p = 1.X_p + 0.X_q + \epsilon$$
$$X_q = 1.X_q + 0.X_p$$

Solve by eliminating one variable at a time:

$$X_q = 1^* 0.X_p \text{ by Arden's rule}$$

So $X_p = 1.X_p + 01^* 0X_p + \epsilon$
 $= (1 + 01^* 0)X_p + \epsilon$
So $X_p = (1 + 01^* 0)^*$ by Arden's rule

General (non-examinable) proof of Kleene's theorem: From NFAs to regular expressions

Given an NFA $N = (Q, \Delta, S, F)$ (without ϵ -transitions), we'll show how to define a regular expression defining the same language as N.

In fact, to build this up, we'll construct a three-dimensional array of regular expressions α_{uv}^{χ} : one for every $u \in Q, v \in Q, X \subseteq Q$.

Informally, α_{uv}^{X} will define the set of strings that get us from u to v allowing only intermediate states in X.

We shall build suitable regular expressions $\alpha_{u,v}^{X}$ by working our way from smaller to larger sets X.

At the end of the day, the language defined by N will be given by the sum (+) of the languages α_{sf}^Q for all states $s \in S$ and $f \in F$.

Kleene algebra From DFAs to regular expressions Appendix: from NFAs to regular expressions

Construction of α_{uv}^{X}

Here's how the regular expressions α_{uv}^{χ} are built up.

 If X = Ø, let a₁,..., a_k be all the symbols a such that (u, a, v) ∈ Δ. Two subcases:

• If
$$u \neq v$$
, take $\alpha_{uv}^{\emptyset} = a_1 + \cdots + a_k$
• If $u = v$, take $\alpha_{uv}^{\emptyset} = (a_1 + \cdots + a_k) + \epsilon$

Convention: if k = 0, take ' $a_1 + \ldots + a_k$ ' to mean \emptyset .

• If $X \neq \emptyset$, choose any $q \in X$, let $Y = X - \{q\}$, and define

$$\alpha_{uv}^{X} = \alpha_{uv}^{Y} + \alpha_{uq}^{Y} (\alpha_{qq}^{Y})^{*} \alpha_{qv}^{Y}$$

Applying these rules repeatedly gives us $\alpha_{u,v}^{X}$ for every u, v, X.

Kleene algebra From DFAs to regular expressions Appendix: from NFAs to regular expressions

NFAs to regular expressions: tiny example

Let's revisit our old friend:

Here p is the only start state and the only accepting state. By the rules on the previous slide:

$$\alpha_{p,p}^{\{p,q\}} = \alpha_{p,p}^{\{p\}} + \alpha_{p,q}^{\{p\}} (\alpha_{q,q}^{\{p\}})^* \alpha_{q,p}^{\{p\}}$$

Now by inspection (or by the rules again), we have

$$\begin{array}{rcl} \alpha_{p,p}^{\{p\}} &=& 1^{*} & & \alpha_{p,q}^{\{p\}} &=& 1^{*}0 \\ \alpha_{q,q}^{\{p\}} &=& 1+01^{*}0 & & \alpha_{q,p}^{\{p\}} &=& 01^{*} \end{array}$$

So the required regular expression is

$$1^* + 1^*0(1+01^*0)^*01^*$$
 (A bit messy!)

 Closure properties of regular languages Regular expressions
 Kleene algebra

 Kleene's theorem and Kleene algebra
 From DFAs to regular expressions

 Appendix: from NFAs to regular expressions
 Appendix: from NFAs to regular expressions

Reading

Relevant reading:

- Regular expressions: Kozen chapters 7,8; J & M chapter 2.1. (Both texts actually discuss more general 'patterns' — see next lecture.)
- From regular expressions to NFAs: Kozen chapter 8; J & M chapter 2.3.
- Kleene algebra: Kozen chapter 9, 10.
- From NFAs to regular expressions: Kozen chapter 9.

Next time: Some applications of all this theory.

- Pattern matching
- Lexical analysis