
Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

Non-deterministic Finite Automata
Informatics 2A: Lecture 4

Alex Simpson

School of Informatics
University of Edinburgh
als@inf.ed.ac.uk

25 September, 2012

1 / 23

als@inf.ed.ac.uk

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

1 Non-deterministic finite automata (NFAs)

2 Equivalence of DFAs and NFAs
The goal: converting NFAs to DFAs
Worked example
The general construction

3 First application: union of regular languages

2 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

Variation on a theme: Non-deterministic finite automata

In an NFA, for any current state and any symbol, there may be
zero, one or many new states we can jump to.

q0 q1 q4 q5q2 q3

0,1

1 0,10,10,10,1 0,1 0,1 0,1

Here there are two transitions for ‘1’ from q0, and none from q5.

NFAs are useful because . . .

We often wish to ignore certain details of a system, and model
just the range of possible behaviours.

Some languages can be specified much more concisely by
NFAs than by DFAs.

Certain useful facts about regular languages are most
conveniently proved using NFAs.

3 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

The language accepted by an NFA

The language associated with an NFA is defined to consist of all
strings that are accepted under some possible execution run.

Example:

q0 q1 q4 q5q2 q3

0,1

1 0,10,10,10,1 0,1 0,1 0,1

The associated language is

{x ∈ Σ∗ | the fifth symbol from the end of x is 1}

To ponder: Could you design a DFA for the same language?

4 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

Formal definition of NFAs

Formally, an NFA N with alphabet Σ consists of:

A set Q of states,

A transition relation ∆ ⊆ Q × Σ× Q,

A set S ⊆ Q of possible starting states.

A set F ⊆ Q of accepting states.

Note: any DFA is an NFA!

5 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

Example formal definition

q0 q1 q4 q5q2 q3

0,1

1 0,10,10,10,1 0,1 0,1 0,1

Q = {q0, q1, q2, q3, q4, q5}

∆ = { (q0, 0, q0), (q0, 1, q0), (q0, 1, q1), (q1, 0, q2),

(q1, 1, q2), (q2, 0, q3), (q2, 1, q3), (q3, 0, q4),

(q3, 1, q4), (q4, 0, q5), (q4, 1, q5) }

S = {q0}

F = {q5}

6 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

Formal definition of acceptance

From the formal definition of an NFA, we can define a many-step
transition relation ∆̂ ⊆ Q × Σ∗ × Q:

(q, ε, q′) ∈ ∆̂ iff q′ = q

(q, xu, q′) ∈ ∆̂ iff ∃q′′. (q, x , q′′) ∈ ∆̂ & (q′′, u, q′) ∈ ∆

The language accepted by the NFA is then

L(N) = {x ∈ Σ∗ | ∃s, q. s ∈ S & (s, x , q) ∈ ∆̂ & q ∈ F}

7 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

The goal: converting NFAs to DFAs
Worked example
The general construction

DFAs and NFAs

By definition, a regular language is one that is recognized by
some DFA.

Every DFA is an NFA, but not vice versa.

So you might wonder whether NFAs are ‘more powerful’ than
DFAs. Are there languages that can be recognized by an NFA
but not by any DFA?

The main goal of the lecture is to show that the answer is No.
In fact, any NFA can be converted into a DFA with exactly
the same associated language.

So regular languages can equally well be defined as those that
are exactly recognized by some NFA. This makes it easy to
prove some further useful facts about regular languages.

8 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

The goal: converting NFAs to DFAs
Worked example
The general construction

Clicker question

Consider our example NFA over {0, 1}:

q0 q1 q4 q5q2 q3

0,1

1 0,10,10,10,1 0,1 0,1 0,1

In what range is the number of states of the smallest equivalent
DFA?

A: ≤ 9

B: 10–19

C: 20–29

D: 30–39

9 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

The goal: converting NFAs to DFAs
Worked example
The general construction

NFAs to DFAs: the idea

Given an NFA N over Σ and a string x ∈ Σ∗, how would you in
practice decide whether x ∈ L(N)?

q0

q2

q1

a

a,b

a,b

a

a

String to process: aba

Idea: At each stage in processing the string, keep track of all the
states the machine might possibly be in.

10 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

The goal: converting NFAs to DFAs
Worked example
The general construction

Stage 0: initial state

At the start, the NFA can only be in the initial state q0.

q0

q2

q1

a

a,b

a,b

a

a

String to process: aba
Processed so far: ε
Next symbol: a

11 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

The goal: converting NFAs to DFAs
Worked example
The general construction

Stage 1: after processing ‘a’

The NFA could now be in either q0 or q1.

q0

q2

q1

a

a,b

a,b

a

a

String to process: aba
Processed so far: a
Next symbol: b

12 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

The goal: converting NFAs to DFAs
Worked example
The general construction

Stage 2: after processing ‘ab’

The NFA could now be in either q1 or q2.

q0

q2

q1

a

a,b

a,b

a

a

String to process: aba
Processed so far: ab
Next symbol: a

13 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

The goal: converting NFAs to DFAs
Worked example
The general construction

Stage 3: final state

The NFA could now be in q2 or q0. (It could have got to q2 in two
different ways, though we don’t need to keep track of this.)

q0

q2

q1

a

a,b

a,b

a

a

String to process: aba
Processed so far: aba

Since we’ve reached the end of the input string, and the set of
possible states includes the accepting state q0, we can say that the
string aba is accepted by this NFA.

14 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

The goal: converting NFAs to DFAs
Worked example
The general construction

The key insight

The process we’ve just described is a completely deterministic
process! Given any current set of ‘coloured’ states, and any
input symbol in Σ, there’s only one right answer to the
question: ‘What should the new set of coloured states be?’

What’s more, it’s a finite state process. A ’state’ is simply a
choice of ‘coloured’ states in the original NFA N.
If N has n states, there are 2n such choices.

This suggests how an NFA with n states can be converted
into an equivalent DFA with 2n states.

15 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

The goal: converting NFAs to DFAs
Worked example
The general construction

The subset construction: example

Our 3-state NFA gives rise to a DFA with 23 = 8 states. The states
of this DFA are subsets of {q0, q1, q2}.

{q0,q1,
 q2}

{q0,q1} {q1,q2} {q0,q2}

{q0} {q1} {q2}

{}

a

b a,b

b

a,b

abb

ab

ba

a

a
(Example string: aba)

The accepting states of this DFA are exactly those that contain an
accepting state of the original NFA.

16 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

The goal: converting NFAs to DFAs
Worked example
The general construction

The subset construction in general

Given an NFA N = (Q,∆, S ,F), we can define an equivalent DFA
M = (Q ′, δ′, s ′,F ′) (over the same alphabet Σ) like this:

Q ′ is 2Q , the set of all subsets of Q. (Also written P(Q).)

δ′(A, u) = {q′ ∈ Q | ∃q ∈ A. (q, u, q′) ∈ ∆}. (Set of all states
reachable via u from some state in A.)

s ′ = S .

F ′ = {A ⊆ Q | ∃q ∈ A. q ∈ F}.

It’s then not hard to prove mathematically that L(M) = L(N).
(See Kozen for details.)

17 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

The goal: converting NFAs to DFAs
Worked example
The general construction

The subset construction: Summary

We’ve shown that for any NFA N, we can construct a DFA M
with the same associated language.

So an alternative definition of ‘regular language’ would be
‘language recognized by some NFA’.

Often a language can be specified more concisely by an NFA
than by a DFA.

We can automatically convert an NFA to a DFA any time we
want, at the risk of an exponential blow-up in the number of
states.

In practice, DFA minimization will often mitigate this.

But not always!

18 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

The goal: converting NFAs to DFAs
Worked example
The general construction

The subset construction: Summary

We’ve shown that for any NFA N, we can construct a DFA M
with the same associated language.

So an alternative definition of ‘regular language’ would be
‘language recognized by some NFA’.

Often a language can be specified more concisely by an NFA
than by a DFA.

We can automatically convert an NFA to a DFA any time we
want, at the risk of an exponential blow-up in the number of
states.

In practice, DFA minimization will often mitigate this.

But not always!

18 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

The goal: converting NFAs to DFAs
Worked example
The general construction

Exponential blow-up: an example

Recall the example NFA from earlier:

q0 q1 q4 q5q2 q3

0,1

1 0,10,10,10,1 0,1 0,1 0,1

Associated language:

{x ∈ Σ∗ | the fifth symbol from the end of x is 1}

Any DFA for recognizing this language will need at least 25 = 32
states, since in effect such a machine has to ‘remember’ the last
five symbols seen.

In fact the minimal DFA has exactly 32 states.

19 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

The goal: converting NFAs to DFAs
Worked example
The general construction

Clicker question

Consider the following NFA over {a, b, c}:

a

a

b

c

What is the minimum number of states of an equivalent DFA?

A: 3

B: 4

C: 5

D: 6

20 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

The goal: converting NFAs to DFAs
Worked example
The general construction

Solution

An equivalent DFA must have at least 5 states!

b

c

b

c

a a,b,c

(garbage state)

. . . .

. . . .

21 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

NFAs: a first application

Consider the following little theorem:

If L1 and L2 are regular languages over Σ, so is L1 ∪ L2.

This can be shown using DFAs . . . but it’s dead easy using NFAs.

Suppose N1 = (Q1,∆1, S1,F1) is an NFA for L1, and
N2 = (Q2,∆2, S2,F2) is an NFA for L2.

We may assume Q1 ∩ Q2 = ∅ (just relabel states if not).

Now consider the NFA

(Q1 ∪ Q2, ∆1 ∪∆2, S1 ∪ S2, F1 ∪ F2)

This is just N1 and N2 ‘side by side’. Clearly, this NFA recognizes
precisely L1 ∪ L2.

(Quite useful in practice — no state explosion!)
22 / 23

Non-deterministic finite automata (NFAs)
Equivalence of DFAs and NFAs

First application: union of regular languages

Reading

Relevant reading:

Kozen chapters 5 and 6;
J & M section 2.2.7 (very brief).

Next time: Yet another way of specifying regular languages: via
regular expressions (cf. Inf 1 Computation & Logic).

23 / 23

	Non-deterministic finite automata (NFAs)
	Equivalence of DFAs and NFAs
	The goal: converting NFAs to DFAs
	Worked example
	The general construction

	First application: union of regular languages

