We have discussed several types of natural language processing (NLP) techniques in Inf2A:

- Part of speech tagging: assigning lexical categories to words;
- Parsing: assigning syntactic structure to strings;
- Language Modeling: assigning probability to a string;
- Semantic Analysis: assigning an interpretation to a string.

Here, we’ll look at where these techniques can be used in NLP applications to do practical things.

Speech synthesis generates speech from text. The main components of a Text-to-Speech system:

- **Speech database**: Recordings of speakers segmented into diphones or larger units;
- **Text processing**: To normalize the input text (numbers, punctuation, etc.);
- **Linguistic processing**: To add pronunciation information (phonetic and prosodic) to the text;
- **Synthesis**: To select speech units from the database and assemble them based on the pronunciation information.

Most of these components are trained on corpus data using probabilistic (machine learning) models.
Tasks and Applications
Sample Applications
Further Courses

Speech Synthesis

Demos of deployed TTS systems:
- AT&T System, male voice, American English
- AT&T System, female voice, British English
- CereProc System, female voice, Scottish English
- CereProc System, male voice, American English

Most commercial systems now use unit selection and can sound very natural in limited domains.

Tasks and Applications
Sample Applications
Further Courses

Speech Synthesis

Information retrieval (IR): Given a query, find all and only documents that are relevant to it, assuming:
- There’s a large document collection to search;
- The user has an information need.
- The user’s need can be formulated in terms of a query (typically keywords);

Example: search engine
Information need: Pages on a particular topic.
Query: user-specified keywords
Output: a ranked list of relevant web pages.

Other examples: bibliographic information systems; electronic newspaper archives.
Information Retrieval: Benefits from NLP

- **Stemming** can improve performance by mapping (walk, walks, walking, walked) onto the same query term.
- **Stop word removal** can improve performance by removing words like a, the, of, etc. that don’t discriminate between documents.
- NLP can resolve **ambiguities**:
 - word sense ambiguity (see tiger in previous example);
 - part of speech ambiguity: walk as noun or verb;
 - syntactic ambiguity: make her duck.
- **Logical form** of query text and document text might provide an even better basis for matching, but currently not feasible.

Machine Translation

Machine translation (MT) systems turn a text in a **source language** into a text in a **target language** (e.g., English to French).

To reach human levels of translation requires:

- **linguistic knowledge** (lexicon, syntax, semantics, pragmatics);
- **world knowledge** to figure out which how to translate an expression in a given context.
- Harder to formalize than linguistic knowledge.

Current solution: learn from corpora that are translations of each other: machine translation as encryption.

Noisy channel model

![Noisy channel model diagram]

- **Key idea**: treat French output as encrypted English input.
- **Large bilingual corpora** which reflect similar “noise” can serve for learning how to break the encryption.
- These are available, e.g., in the form of parliamentary proceedings (Canadian Hansard, Hong-Kong Hansard, EU Parliament).

Mathematical formulation of the noisy channel model: to translate a source language sentence F into a target language sentence E compute:

$$\hat{E} = \arg \max_{E} P(E)P(F|E)$$

where $P(E)$ is a **language model** of the target language and $P(F|E)$ is the **translation model**.

To compute the translation model, we need to **align** the bilingual training corpus on the sentence level and on the word level.
The year 1866 was marked by a bizarre event, a phenomenon unexplained and inexplicable that no one has probably forgotten. Without about the rumors which agitated the people of the ports and overexcited public opinion within the continents of people sea were particularly moved. Traders, shipowners, captains of vessels, skippers and masters of Europe and America, officers the navies of all countries, and after them, governments the various states of the two continents, were concerned of this fact highest point.
The year 1866 was marked by a bizarre event, a phenomenon unexplained and inexplicable that no one has probably forgotten. Without about the rumors which agitated the people of the ports and overexcited public opinion within the continents of people sea were particularly moved. Traders, shipowners, captains of vessels, skippers and masters of Europe and America, officers the navies of all countries, and after them, governments the various states of the two continents, were concerned of this fact highest point.

Excerpt from a famous book. Can you guess its title?

F. P. Walter

THE YEAR 1866 was marked by a bizarre development, an unexplained and downright inexplicable phenomenon that surely no one has forgotten. Without getting into those rumors that upset civilians in the seaports and deranged the public mind even far inland, it must be said that professional seamen were especially alarmed. Traders, shipowners, captains of vessels, skippers, and master mariners from Europe and America, naval officers from every country, and at their heels the various national governments on these two continents, were all extremely disturbed by the business.

Can you now guess the book’s title?
Owls are the order Strigiformes, comprising 200 bird of prey species. Owls hunt mostly small mammals, insects, and other birds though some species specialize in hunting fish.

An owl is a bird. There are about 200 kinds of owls. Owls' prey may be birds, large insects (such as crickets), small reptiles (such as lizards) or small mammals (such as mice, rats, and rabbits).
Why simplify?

1993 US National Adult Literacy Survey (grades 1-5)

- **Tasks and Applications**
 - Speech Synthesis
 - Information Retrieval
 - Machine Translation
 - Text Simplification

- **Sample Applications**
 - Further Courses

- **Further Courses**
 - Speech Synthesis
 - Information Retrieval
 - Machine Translation

How to simplify?

Simple English Wikipedia is a sort of “spin-off” of Wikipedia.

- Treat SimpleEW edits as instances of simplifications?
- But many edits aren’t simplifications.
- Only consider revisions accompanied by “simpl” comments.

Percentage of the adult population for each literacy grade

- 1993 US National Adult Literacy Survey (grades 1-5)
 - 30% or greater
 - 20% to 30%
 - 15% to 20%
 - 10% to 15%
 - 10% or less
 - not available
Synchronous grammars are a way of simultaneously generating pairs of recursively related strings.

- Originally invented for programming language compilation
- Generalization of context-free grammar formalism to simultaneously produce strings in two languages.
- Have been used extensively in syntax-based SMT:
 inversion transduction grammar (ITG; Wu 1997), head transducers (Alshawi et al., 2000), hierarchical phrase-based translation (Chiang, 2007), synchronous tree substitution grammar (STSG; Eisner, 2003), quasi-synchronous grammar (GSG; Smith and Eisner, 2006).

Idea: Use the synchronous grammar formalism to learn simplification paraphrases.
Summarization

A summarization system turns a source document (or multiple documents) into a summary that contains its key points:

Single Document

Multiple Documents

Example: search engines often return a summary with each hit.
Summarization

A typical summarization system has the following components:

- **sentence extraction**: decides which sentences of the source document to retain in the summary;
- **sentence compression**: takes the extracted sentences and removes “non-essential” material (e.g., adjuncts);
- **sentence combination**: combines extracted sentences into longer ones.

Each of these components can benefit from NLP techniques (e.g., POS tagging, parsing).

Source Text

S1: Saudi Arabia on Tuesday decided to sign the nuclear weapons non-proliferation treaty, a strong indication it will not seek nuclear warheads for intermediate-range missiles it recently acquired from China.
S2: The official Saudi Press Agency reported that King Fahd made the decision during a Cabinet meeting in Riyadh, the Saudi capital.
S3: The meeting was called in response to a recommendation by Prince Saud al-Faisal, the Saudi foreign minister, that the kingdom sign the international treaty against the spread of nuclear arms.
S4: An account of the Cabinet discussions and decisions at the meeting, which ended before dawn, was issued by Information Minister Ali al-Shaer and distributed by the agency. The agency, monitored in Bahrain, did not elaborate.
S5: It appeared the timing of the decision was designed primarily to reassure the United States that the kingdom will not try to arm its CSS-2 missiles with nuclear warheads. The decision also was viewed as an attempt to blunt Israel’s allegations that the missiles constituted a threat to its safety.

Reduced Sentences

S1: Saudi Arabia decided to sign the nuclear weapons non-proliferation treaty, a strong indication it will not seek nuclear warheads for intermediate-range missiles it recently acquired from China.
S2+S3: The official Saudi Press Agency reported that King Fahd made the decision during a Cabinet meeting, called in response to a recommendation by Prince Saud al-Faisal, the Saudi foreign minister, that the kingdom sign the international treaty against the spread of nuclear arms.

Combined Sentences

S1: Saudi Arabia decided to sign the nuclear weapons non-proliferation treaty, a strong indication it will not seek nuclear warheads for intermediate-range missiles. S2+S3: The official Saudi Press Agency reported that King Fahd made the decision during a Cabinet meeting, called in response to a recommendation by Prince al-Faisal.
Michelle Obama fever hits the UK

In the UK on her first visit as first lady, Michelle Obama seems to be making just as big an impact. She has attracted as much interest and columns inches as her husband on this London trip; creating a buzz with her dazzling outfits, her own schedule of events and her own fanbase. Outside Buckingham Palace, as crowds gathered in anticipation of the Obamas' arrival, Mrs Obama's star appeal was apparent.

Queen, Obama, Michelle, Buckingham, London, UK

It is reported that the Queen asked to stay in touch with Mrs Obama

Given what you now know about Inf2a:

1. You’d like to know more about formal languages
2. You’d like to know more about NLP
3. You’d like to know more about both
4. It was a good course but you did not find the material exciting
5. You’d rather switch to drama than do anything remotely related
How do I do well on the exam?

1. Read the slides and do the reading
2. Read the slides and go over past exams
3. Read the slides, do the reading, and can answer tutorial questions with ease
4. Do nothing, just chance it
5. Revise the Pumping Lemma

Tip: if we spent more than one lecture on a topic, we consider it important, and chances are it will figure in the exam; ditto for topics figuring in tutorials.

Courses related to NLP

2nd Year
- Informatics 2B (S2): Algorithms and Pattern Recognition
- Informatics 2D (S2): Modern Artificial Intelligence

3rd Year
- Foundations of Natural Language Processing (S2): continues where Inf2a left off (more NLP algorithms, techniques, tasks)

4th Year
- Speech Processing (S1), Speech Synthesis (S2)
- Text Technologies (S1)
- Machine Translation (S2), Natural Language Understanding (S2), Natural Language Generation (S2)

Courses related to Formal Languages

3rd Year
- Computability and Intractability (S1)
- Compiling Techniques (S2)
- Language Semantics and Implementation (S2)

4th Year
- Advances in Programming Languages (S1)
- Compiler Optimization (S2)
- Computational Complexity (S2)