
Part of Speech Tagging
Automatic POS Tagging

Part of Speech Tagging

Informatics 2A: Lecture 13

Bonnie Webber (revised by Frank Keller)

School of Informatics

University of Edinburgh

bonnie@inf.ed.ac.uk

16 October 2007

Informatics 2A: Lecture 13 Part of Speech Tagging 1

Part of Speech Tagging
Automatic POS Tagging

1 Part of Speech Tagging
Benefits
Corpus Annotation
Tags and Tokens

2 Automatic POS Tagging
Rule-based Tagging
Statistical Tagging
Transformation-based Tagging
Unknown Words

Readings:

J&M (1st ed), ch. 8 (pp. 298–321)
or J&M (2nd ed), ch. 5 (pp.11-42);
NLTK Book:
ch. 3 on words (http://nltk.org/doc/en/words.html),
ch. 4 on tagging (http://nltk.org/doc/en/tag.html)

Informatics 2A: Lecture 13 Part of Speech Tagging 2

Part of Speech Tagging
Automatic POS Tagging

Benefits
Corpus Annotation
Tags and Tokens

Benefits of Part of Speech Tagging

Can be used to succinctly characterise the context in which a word
is found in spoken or written text. E.g., in the Brown Corpus, the
adverb often precedes:

PoS Example Freq

verb: past participle he had often gone . . . 61

verb: base form they often make . . . 51

verb: simple past they often saw . . . 36

adjective it is often dangerous to . . . 30

. . .

This can help in recognizing similarities and differences between
words. Eg, do all adverbs pattern like often?

Informatics 2A: Lecture 13 Part of Speech Tagging 3

Part of Speech Tagging
Automatic POS Tagging

Benefits
Corpus Annotation
Tags and Tokens

Benefits of Part of Speech Tagging

Can help in determining authorship: People’s use of words varies.
Word frequency distributions can help determine if two documents
were written by the same person.

Can help in speech synthesis and recognition. For example, say the
following out-loud:

1 Have you read ’The Wind in the Willows’?

2 The clock has stopped. Please wind it up.

3 The students tried to protest.

4 The students are pleased that their protest was successful.

Informatics 2A: Lecture 13 Part of Speech Tagging 4

Part of Speech Tagging
Automatic POS Tagging

Benefits
Corpus Annotation
Tags and Tokens

Corpus Annotation

Annotation: adds information that is not explicit in a corpus,
increases its usefulness (often application-specific).

PoS annotation scheme consists of a tag set and annotation
guidelines.

Tag set: an inventory of labels for marking up a text corpus

Annotation guidelines tell annotators (domain experts) how tag set
is to be applied; ensure consistency across different annotators.

Example: part of speech tag sets

1 CLAWS tag (used for BNC); 62 tags;

2 Brown tag (used for Brown corpus); 87 tags;

3 Penn tag set (used for the Penn Treebank); 45 tags.

Informatics 2A: Lecture 13 Part of Speech Tagging 5

Part of Speech Tagging
Automatic POS Tagging

Benefits
Corpus Annotation
Tags and Tokens

POS Tag Sets for English

Category Examples CLAWS Brown Penn
Adjective happy, bad AJ0 JJ JJ
Determiner this, each DT0 DT DT
Noun singular woman, book NN1 NN NN
Noun plural women, books NN2 NN NN
Noun proper singular London, Michael NP0 NP NNP
Noun proper plural Finns, Hearts NP0 NPS NNPS
reflexive pro itself, ourselves PNX
plural reflexive pro ourselves, . . . PPLS
Verb past participle given, found VVN VBN VBN
Verb base form give, make VVB VB VB
Verb simple past ate, gave VVD VBD VBD

Informatics 2A: Lecture 13 Part of Speech Tagging 6

Part of Speech Tagging
Automatic POS Tagging

Benefits
Corpus Annotation
Tags and Tokens

Tags and Tokens

In NLTK, a token and its associated POS tag are represented using
a Python tuple:

>>> tok = (’fly’, ’nn’)

>>> print tok[0]

fly

>>> print tok[1]

nn

In files, tagged tokens are usually given in the form text/tag:

Our/PRP\$ enemies/NNS are/VBP innovative/JJ and/CC resourceful/JJ

,/, and/CC so/RB are/VB we/PRP ./. They/PRP never/RB stop/VB

thinking/VBG about/IN new/JJ ways/NNS to/TO harm/VB our/PRP\$

country/NN and/CC our/PRP\$ people/NN, and/CC neither/DT do/VB

we/PRP ./.

Informatics 2A: Lecture 13 Part of Speech Tagging 7

Part of Speech Tagging
Automatic POS Tagging

Benefits
Corpus Annotation
Tags and Tokens

Tags and Tokens

The NLTK function tag2tuple maps text/tag pairs into Python
tuples; tokenize provides simple tokenization:

>>> from nltk.tag import tokenize, tag2tuple

>>> sent = """

... John/nn saw/vb the/at book/nn on/in the/at table/nn ./end

... He/nn sighed/vb ./end

... """

>>> for t in tokenize.whitespace(sent):

... print tag2tuple(t),

(’John’, ’nn’) (’saw’, ’vb’) (’the’, ’at’) (’book’, ’nn’)

(’on’, ’in’) (’the’, ’at’) (’table’, ’nn’) (’.’, ’end’)

(’He’, ’nn’) (’sighed’, ’vb’) (’.’, ’end’)

Informatics 2A: Lecture 13 Part of Speech Tagging 8

Part of Speech Tagging
Automatic POS Tagging

Benefits
Corpus Annotation
Tags and Tokens

Tags and Tokens

This mapping is done automatically when tagged files are read in
from nltk.corpus. For example, the Brown corpus:

>>> from nltk.corpus import brown

>>> print brown.tagged(’a’)[0]

[(’The’, ’at’), (’Fulton’, ’np-tl’), (’County’, ’nn-tl’),

(’Grand’, ’jj-tl’), (’Jury’, ’nn-tl’), (’said’, ’vbd’),

(’Friday’, ’nr’), (’an’, ’at’), (’investigation’, ’nn’),

(’of’, ’in’), ("Atlanta’s", ’np$’), (’recent’, ’jj’),

...]

Informatics 2A: Lecture 13 Part of Speech Tagging 9

Part of Speech Tagging
Automatic POS Tagging

Rule-based Tagging
Statistical Tagging
Transformation-based Tagging
Unknown Words

Automatic POS Tagging

POS tagging a large corpus by hand is a lot of work. Automatic
taggers assign the correct word class label to each token in a text.

Automatic tagging is difficult because of part-of-speech ambiguity.

Example

In the Brown corpus (1M words: 500 written texts, different
genres), there are 39440 different word types:

35340 have only 1 POS tag anywhere in corpus (89.6%)

4100 (10.4%) have 2–7 POS tags

But the most frequent words have more than one POS tag, so
more than 40% of the tokens are ambiguous.

Informatics 2A: Lecture 13 Part of Speech Tagging 10

Part of Speech Tagging
Automatic POS Tagging

Rule-based Tagging
Statistical Tagging
Transformation-based Tagging
Unknown Words

Rule-based Tagging

Basic idea:

1 Assign each token all its possible tags.

2 Apply rules that eliminate all tags for a token that are
inconsistent with its context.

Example

the DT (determiner)
can MD (modal)

NN (sg noun)
VB (base verb)

⇒
the DT (determiner)
can MD (modal) X

NN (sg noun)
√

VB (base verb) X

For an unknown token, assign it a tag that is consistent with its
context (eg, the most frequent tag).

Informatics 2A: Lecture 13 Part of Speech Tagging 11

Part of Speech Tagging
Automatic POS Tagging

Rule-based Tagging
Statistical Tagging
Transformation-based Tagging
Unknown Words

Statistical Tagging

Basic idea: Assign each token its most common tag:

1 Take a manually tagged corpus.

2 For each word type, record the frequency of each tag it has
been assigned.

3 Label each word in a new text with its most frequent tag from
the tagged corpus.

This approach uses unigram frequency, i.e., the frequency of
word-tag pairs for individual words (no context).

NLTK: tag.unigram class (see chapter 4 of NLTK book)

train() method

tag() method

Informatics 2A: Lecture 13 Part of Speech Tagging 12

Part of Speech Tagging
Automatic POS Tagging

Rule-based Tagging
Statistical Tagging
Transformation-based Tagging
Unknown Words

Statistical Tagging – Unigram

>>> from nltk import tokenize, tag

>>> from nltk.corpus import brown

>>> train_sents = brown.tagged(’b’)

>>> unigram_tagger = tag.Unigram()

>>> unigram_tagger.train(train_sents)

>>> text = "the human race is expected to race tomorrow’’

>>> tokens = list(tokenize.whitespace(text))

>>> list(unigram_tagger.tag(tokens))

[(’the’, ’at’), (’human’, ’jj’), (’race’, ’nn’), (’is’, ’bez’),

(’expected’, ’vbn’), (’to’, ’to’), (’race’, ’nn’), (’tomorrow’,

’None’)]

Do you see any problem here with unigram tagging?

Informatics 2A: Lecture 13 Part of Speech Tagging 13

Part of Speech Tagging
Automatic POS Tagging

Rule-based Tagging
Statistical Tagging
Transformation-based Tagging
Unknown Words

Statistical Tagging

Bigram frequency can improve tagging accuracy by considering the
PoS of the preceding word when tagging the current word.

Basic idea: Choose the tag ti for word wi that maximizes the
probability of ti given the tag of the previous word ti−1 and wi .

ti = arg max
j

P(tj |ti−1,wi)

Bigram tagging chooses the most probable sequence of tags,
considering two-token sequences. NLTK: tag.bigram class:

train() method

tag() method

Informatics 2A: Lecture 13 Part of Speech Tagging 14

Part of Speech Tagging
Automatic POS Tagging

Rule-based Tagging
Statistical Tagging
Transformation-based Tagging
Unknown Words

Statistical Tagging – Bigram

>>> from nltk import tokenize, tag

>>> from nltk.corpus import brown

>>> train_sents = brown.tagged(’b’)

>>> bigram_tagger = tag.Bigram()

>>> bigram_tagger.train(train_sents)

>>> text = "the human race is expected to race tomorrow"

>>> tokens = list(tokenize.whitespace(text))

>>> list(bigram_tagger.tag(tokens))

[(’the’, None), (’human’, None), (’race’, None), (’is’, None),

(’expected’, None), (’to’, ’in-hl’), (’race’, None), (’tomorrow’,

None)]

Problem: Need more data to train on before one can reap benefit
from bigram context.

Informatics 2A: Lecture 13 Part of Speech Tagging 15

Part of Speech Tagging
Automatic POS Tagging

Rule-based Tagging
Statistical Tagging
Transformation-based Tagging
Unknown Words

Transformation-based Tagging

Basic idea: combine features of both rule-based and statistical
methods:

1 Label each word with its most frequent tag from a training
corpus (i.e., unigram tagging)

2 Apply context-sensitive transformational rules that change the
most frequent tag to one that most improves labeling with
respect to a manually tagged “gold standard”.

3 Apply the combination of unigram tagging and these
transformational rules in sequence to new text.

Informatics 2A: Lecture 13 Part of Speech Tagging 16

Part of Speech Tagging
Automatic POS Tagging

Rule-based Tagging
Statistical Tagging
Transformation-based Tagging
Unknown Words

Transformation-based Tagging

Example: assume the following unigram probabilities:

P(NN|race) = .98 P(VB |race) = .02

Tag the sentence the human race is expected to race tomorrow :

the/DT human/NN race/NN is/VBZ expected/VBN to/TO race/NN

tomorrow/NN

Rule: Change NN to VB when previous tag is TO. This yields:

the/DT human/NN race/NN is/VBZ expected/VBN to/TO race/VB

tomorrow/NN

Informatics 2A: Lecture 13 Part of Speech Tagging 17

Part of Speech Tagging
Automatic POS Tagging

Rule-based Tagging
Statistical Tagging
Transformation-based Tagging
Unknown Words

Unknown Words

In every new text to be tagged, there will be words that don’t
appear in the training corpus. What to do?

Most really new words are nouns: guess “noun” whenever word is
unknown.

>>> from nltk_lite import tokenize, tag

>>> text = "John saw 3 Trans-Dnieprian oryxes."

>>> tokens = list(tokenize.whitespace(text))

>>> print tokens

[’John’, ’saw’, ’3’, Trans-Dnieprian’, oryxes’, ’.’]

>>>

>>> my_tagger = tag.Default(’nn’)

>>> list(my_tagger.tag(tokens))

[(’John’, ’nn’), (saw’, ’nn’), (’3’, ’nn’),

(Trans-Dnieprian, ’nn’), (’oryxes, ’nn’), (’.’, ’nn’)]

Informatics 2A: Lecture 13 Part of Speech Tagging 18

Part of Speech Tagging
Automatic POS Tagging

Rule-based Tagging
Statistical Tagging
Transformation-based Tagging
Unknown Words

Unknown Words

Recall from Lecture 12, that formal criteria (i.e., the internal
structure of a token) can be used to recognize the PoS of an
unknown token.

This can be implemented using NLTK’s regular expression tagger:

>>> patterns = [(r’^[0-9]+(.[0-9]+)?$’, ’cd’), (r’.*’, ’nn’)]

>>> nn_cd_tagger = tag.Regexp(patterns)

>>> list(nn_cd_tagger.tag(tokens))

[(’John’, ’nn’), (’saw’, ’nn’), (’3’, ’cd’), (’Trans-Dnieprian’,

’nn’), (’oryxes’, ’nn’), (’.’, ’nn’)]

>>> patterns = [(r’^[0-9]+(.[0-9]+)?$’, ’cd’), (r’.*s$’, ’nns’),

(r’.*’, ’nn’)]

>>> nns_cd_tagger = tag.Regexp(patterns)

>>> list(nns_cd_tagger.tag(tokens))

[(’John’, ’nn’), (’saw’, ’nn’), (’3’, ’cd’),

(’Trans-Dnieprian’, ’nn’), (’oryxes’, ’nns’)]

Informatics 2A: Lecture 13 Part of Speech Tagging 19

Part of Speech Tagging
Automatic POS Tagging

Rule-based Tagging
Statistical Tagging
Transformation-based Tagging
Unknown Words

Unknown Words

Use one of these unknown word taggers as a backoff strategy for
(for example) a unigram tagger for known words:

>>> from nltk_lite.corpora import brown

>>> from nltk_lite import tokenize, tag

>>> text = "John saw 3 Trans-Dnieprian oryxes"

>>> tokens = list(tokenize.whitespace(text))

>>> train_sents = brown.tagged(’d’)

>>>

>>> unigram_tagger1=tag.Unigram()

>>> unigram_tagger1.train(train_sents)

>>> list(unigram_tagger1.tag(tokens))

[(’John’, ’np-tl’), (’saw’, ’vbd’), (’3’, ’cd’),

(’Trans-Dnieprian’, None), (’oryxes’, None)]

Informatics 2A: Lecture 13 Part of Speech Tagging 20

Part of Speech Tagging
Automatic POS Tagging

Rule-based Tagging
Statistical Tagging
Transformation-based Tagging
Unknown Words

Unknown Words

>>> patterns = [(r’^[0-9]+(.[0-9]+)?$’, ’cd’), (r’.*s$’, ’nns’),

(r’.*’, ’nn’)]

>>> nns_cd_tagger=tag.Regexp(patterns)

>>>

>>> unigram_tagger2=tag.Unigram(backoff=nns_cd_tagger)

>>> unigram_tagger2.train(train_sents)

>>> list(unigram_tagger2.tag(tokens))

[(’John’, ’np’), (’saw’, ’vbd’), (’3’, ’cd’),

(’Trans-Dnieprian’, ’nn’), (’oryxes’, ’nns’)]

Informatics 2A: Lecture 13 Part of Speech Tagging 21

Part of Speech Tagging
Automatic POS Tagging

Rule-based Tagging
Statistical Tagging
Transformation-based Tagging
Unknown Words

Summary

A number of POS tag sets exist for English (e.g. Brown,
CLAWS, Penn).

Automatic POS tagging is difficult because many highly
frequent words are POS ambiguous.

Rule-based tagging assigns a word all possible tags and the
uses context rules to disambiguate.

Statistical tagging assigns a word its most likely tag, based on
the unigram or bigram frequencies in a training corpus.

Transformation-based tagging combines the two approaches.

Unknown words can be handled by assigning them a default
POS or by looking at the word’s internal structure.

Informatics 2A: Lecture 13 Part of Speech Tagging 22

