
Language Processing note 9 CS2 30.11.2001

CS2 Language Processing note 9

Top-Down and Bottom-Up Parsing

Recall that parsing is the activity of checking whether a given string of symbols
(usually, the stream of tokens produced by a lexical analyser) is in the language
of some grammar, and if so, constructing a parse tree for it.

[Actually, in practice, we would like a parser to do rather more than this. If
the string is not in the language, a helpful parser should issue a sensible error
message which helps the user to pinpoint the error. Furthermore, if the parser
discovers one error somewhere in the string, it should ideally be able to somehow
“recover” from this error and continue parsing, so that it can inform the user of
all the errors in the input rather than just the first one. Good error reporting and
error recovery are in fact quite hard to achieve, since a parser cannot in general
know what the user intended. We will therefore leave these interesting issues to
one side for now.]

There are two main kinds of parsers in use, named for the way they build
the parse trees. A top-down parser attempts to construct a tree from the root,
applying productions forward to expand nonterminals into strings of symbols. A
bottom-up parser builds the tree starting with the leaves, using productions in
reverse to identify strings of symbols that can be grouped together. In both cases
the construction of the derivation is directed by scanning the input sequence
from left to right, one symbol at a time.

An example

The following grammar is for a small language for describing electrical circuits:

C → seq B | par B | basic B → C B | end

The start symbol is C, for circuit; the other nonterminal B stands for a block of
circuits ending with the keyword end. Here basic represents a token describing
some basic component such as a resistor or capacitor. An expression of the form
seq C1 . . . Cn end is used to represent n components connected in series, while
par C1 . . . Cn end represents n components connected in parallel. We use ‘|’ to
join productions that share the same left-hand side, so for example t → u | v | w
abbreviates three productions t → u, t → v and t → w. [Note that t → u | v | w
itself is not a production, but an abbreviation for three productions.]

Consider now the following sentence:

seq par basic basic end basic end

1

Language Processing note 9 CS2 30.11.2001

To parse this from the top down, we begin with the start symbol C, and repeat-
edly choose a production from the grammar to expand a nonterminal. At each
stage we look at the input to see which is the appropriate production to use.
First, seeing that the sentence begins with seq rather than par or basic, we con-
clude that the first rule to apply must be C → seq B. We therefore have to parse
the remainder of the sentence as a block B. Seeing that the second token in the
string is not end, we conclude that the next rule to apply must be B → CB. We
have thus constructed the first two steps in a derivation:

C ⇒ seq B ⇒ seq C B

We now have to interpret some portion of the string as a circuit, starting after the
initial seq. Seeing that the next token is par, we conclude that the rule to apply
must be C → par B. The third step in the derivation is therefore

seq C B ⇒ seq par B B

We may continue in this way until we have a complete derivation for the sentence.
[Exercise: Finish this off, constructing the corresponding parse tree as you go.]

Notice that this procedure produces a leftmost derivation — that is, one in
which we always choose the leftmost nonterminal to expand. This is coupled
with a left-to-right scan of the input string, in which at each stage we use the
next token to help us decide which production to apply. Fortunately, for this
grammar, the next token is always enough to tell us what the next production
should be.

Whereas in top-down parsing we begin with a single “start symbol” and apply
productions until we arrive at the whole sentence, in bottom-up parsing we start
with the sentence itself and construct a derivation backwards until we arrive at
the start symbol. We do this by scanning the input until we find a symbol or
group of symbols that matches the right hand side of one of our productions. We
then apply the production “backwards”, replacing this group of symbols by the
single nonterminal on the left of the production.

For example, scanning the above sentence from left to right, we discover that
the third token matches the right hand side of the rule C → basic. We may
therefore rewrite the sentence as follows:

seq par basic basic end basic end ⇐ seq par C basic end basic end

(We use the arrow ⇐ here to indicate that this is a backwards derivation step.)
Continuing for two more steps, we notice that the next two tokens basic and end
can likewise be rewritten as C and B respectively, so we arrive at the form

seq par C C B basic end

But now we notice that the pattern C B occurs as the right hand side of the rule
B → CB, so these two symbols may be grouped together and replaced by a B:

seq par C C B basic end ⇐ seq par C B basic end

2

Language Processing note 9 CS2 30.11.2001

We can continue in this way until the whole sentence collapses down to the single
start symbol C. [Exercise: Finish this derivation, and draw the fragments of the
parse tree that have been built up at each stage.]

Once again, this method uses a left-to-right scan of the input, and at each
stage we perform a rewrite as far to the left as possible; and once again, for this
grammar there only one possible choice of production at each stage. However,
because we are constructing a derivation backwards, this means (if you think
about it) that the derivation we end up with will be a rightmost derivation — that
is, one in which it is always the rightmost nonterminal that is expanded. Indeed,
it is typically the case that top-down parsers build leftmost derivations, while
bottom-up parsers build rightmost derivations. Of course, the parse tree we get
will be exactly the same either way (provided the grammar is unambiguous).

Both of these parsing strategies are used in practice, and neither of them is
clearly the better. In general, top-down parsers are a little less powerful, but
their algorithms are rather simpler to understand and to implement. For the
rest of this thread we will concentrate on top-down parsing.

A trickier example

Here is another grammar, this time for a fragment of a programming language:

stmt → var = var | if cond then stmt |
if cond then stmt else stmt

cond → var == var

Here the start symbol is stmt, and the terminal var stands for a token correspond-
ing to a program variable. Suppose we try to parse the statement

if var == var then var = var

using the top-down procedure above. We begin with the symbol stmt, but what
production should we apply first? If we are scanning the sentence from left to
right and we only look at the “next” symbol (in this case the first token, if), there
is no way to choose between the two productions

stmt → if cond then stmt, stmt → if cond then stmt else stmt

There are two ways to respond to this difficulty. We can either look ahead
to see what comes further on in the sentence, or we can pick one production
and backtrack if this later turns out to be the wrong choice. Both of these are
expensive options, as they involve scanning parts of the input more than once.
In the above example, by looking seven tokens ahead we would discover that
we reached the end of the sentence without encountering an else, so the first
of the above rules is the right one. But if the then-clause were some large and
complicated statement, we would have to look ahead a very long way. Similarly
with backtracking: if we picked the wrong rule at first, we could spend a great
deal of time parsing the next part of the sentence before discovering that our first
production was wrong after all.

3

Language Processing note 9 CS2 30.11.2001

Predictive parsing

It is far better if we can work with a grammar for which backtracking or looka-
head is not required (such as the circuits example). Top-down parsing without
backtracking or lookahead is known as predictive parsing. It only applies to cer-
tain context-free grammars. In order for a grammar to be suitable for predictive
parsing it must always be possible to tell, given the current input token a and
the nonterminal A to be expanded, which one of the productions for A generates
a string beginning with a. There must be at most one such production in order
to avoid the need for lookahead or backtracking. If there is no such production
then no parse tree exists and the sentence is not in the language, so a parsing
error is returned to the user. As we shall see, the information about which pro-
duction to use in a given circumstance can be conveniently recorded in a parse
table in which we can simply look up the production that is appropriate for a
given a and A.

Another property that is needed for predictive parsing to work is that the
grammar must not be left-recursive; i.e. there must be no nonterminal A such
that A ⇒� At for any string t. The problem with left-recursive grammars is that
they give rise to infinite loops during parsing: an attempt to expand A may give
rise to an infinite derivation A ⇒� At ⇒� Att ⇒� · · · .

Predictive parsers are also known as LL(1) parsers. The first ‘L’ means they
read input from the left; the second ‘L’ means they construct leftmost derivations
(being top-down parsers); and the ‘1’ means they look just one token ahead.
Agrammar that is suitable for predictive parsing (i.e. one with the above two
properties) is known as an LL(1) grammar. LL(1) parsers are the most widely
used class of top-down parsers. There are also some commonly used classes of
bottom-up parsers, such as LR(1) (because they build rightmost derivations) and
the variant LALR (“lookahead LR”), but we will not study these in detail here.

Predictive parsing obviously works well when every construct of the language
begins with a keyword such as if, while or begin which immediately identifies
the construct that it is. In other cases, as we shall see, predictive parsing still
works, but for not quite such obvious reasons. In still other cases, the grammar
we are given is not suitable for predictive parsing but we can transform it into
an equivalent one that is. And in yet other cases, neither the given grammar nor
any equivalent one is suitable for predictive parsing. We will consider all these
points in more detail in the remaining lectures.

Exercises. (1) Finish stepping through the examples of top-down and bottom-
up parsing on page 2. (2) Using the grammar on page 3, what happens if you try
to parse a statement of the form if cond then if cond then stmt else stmt? (3) Pick
a small part of your favourite programming language, and write a context-free
grammar for it. Would your grammar allow predictive parsing? Would an easy
form of bottom-up parsing work?

John Longley 2002, Ian Stark 2001

4

