
Language Processing note 12 CS2 13.1.2003

CS2 Language Processing note 12

Automatic generation of parsers

In this note we describe how one may automatically generate a parse table from
a given grammar (assuming the grammar is LL(1)). This and similar methods
can be used in practice to build parser generators — programs which take a
grammar supplied by the user and automatically write the code for a parser for
the corresponding languages. We end the note with a brief discussion of lexer
and parser generators.

As we have seen, for small examples of grammars it is often possible to work
out a parse table by hand simply by inspection of the grammar. For a large
grammar, however, this is no longer feasible, and we require a more systematic
method for computing the parse table. The method we shall describe here also
has the virtue that it can be carried out completely automatically, and hence one
can write a program that computes parse tables for us.

First and Follow sets

To generate a parse table from a given grammar, we need some preliminary data
about which tokens a parser might meet when considering any particular non-
terminal. This takes the form of two sets for each nonterminal A, known as
First(A) and Follow (A). One can think of these as follows: Suppose at some point
during parsing, we are expecting a phrase corresponding to some nonterminal
A, and we see a terminal a as the next symbol in the input. Assuming the sen-
tence we are parsing is a valid one, there are two possible kinds of reasons for
the appearance of this a: either it is the first symbol of the A-phrase we are ex-
pecting, or this A-phrase is in fact the empty string and the a we see is the start
of whatever comes after it. We are therefore interested in both “what an A can
possibly start with” and “what an A can possibly be followed by in a complete
sentence”. More precisely:

First: For any nonterminal A, the set First(A) comprises all terminals that can
appear at the start of some sentential form derived from A. In addition, if A
derives the empty string, then First(A) includes the symbol ε.

Follow: For any nonterminal A, the set Follow (A) is made up of all the terminals
that can appear after A in any sentential form derived from some nontermi-
nal. In addition, Follow (A) contains the token $ if A can appear at the end of
some sentential form derived from the start symbol for the grammar.

1

Language Processing note 12 CS2 13.1.2003

For those who like a more mathematical notation:

First(A) = { a | ∃u . A ⇒� au } ∪ {ε | A ⇒� ε }

Follow(A) = { a | ∃B,u,v . B ⇒� uAav } ∪ { $ | ∃u . S ⇒� uA }

Computing First sets

We now give a systematic method for computing First and Follow sets. We will
illustrate our method by applying it to the following grammar G. This describes
a language of commands such as one might type to a shell, where a command
name like cp or ls is followed by some options and some file names.

shell → command args
args → opts files
opts → option opts | ε
files → file files | ε

As a first stage, we construct the set E of potentially empty nonterminals, i.e.
those nonterminals A such that A ⇒� ε. The general method is as follows:

1. Start by setting E to be the set of nonterminals A such that the grammar
contains a production A → ε.

2. For every production A → t in the grammar, if t consists entirely of non-
terminals in E, add A itself to E.

3. Repeat step 2 until E stabilizes.

Applying this method to the grammar G, we see at step 1 that opts, files ∈ E. At
step 2 we then note that since we have a production args → opts files, we must
also have args ∈ E. Since further applications of step 2 do not yield any new
elements of E, we conclude that E = {opts, files, args}.

We now give the algorithm for computing First sets. In fact, it will be conve-
nient to compute a set First(x) for every symbol x, terminal or nonterminal.

1. Start by setting First(a) = {a} for each terminal a; First(A) = {ε} for each
nonterminal A ∈ E; and First(A) = ∅ for each nonterminal A 6∈ E.

2. For each production A → x1x2 · · · xn (where the xi’s may be terminals or
nonterminals), and for each i (1 ≤ i ≤ n) such that xj ∈ E whenever 1 ≤ j ≤
i − 1, add every terminal a ∈ First(xi) to First(A).

3. Repeat step 2 until all the sets First(A) stabilize.

Let us apply this algorithm to our grammar G. We start by setting First(a) =
{a} for each of the terminals a = command, option, file; First(A) = {ε} for A =

2

Language Processing note 12 CS2 13.1.2003

args, opts, files; and First(shell) = ∅. For step 2, we need to consider in turn each
production and each possible value of i for that production. For the production
shell → command args, taking i = 1 gives us that command ∈ First(shell), and we
need not consider i = 2 since command 6∈ E. The production args → opts files
yields nothing at the moment, since First(opts) and First(files) do not at present
contain any terminals. The remaining productions, however, yield that option ∈
First(opts) and file ∈ First(files). This completes the first “round” of step 2. On the
second round, however, we discover something new when we consider the rule
args → opts files: by taking i = 1, 2 respectively, we find that option, file ∈ First(args).
We now observe that the First sets are now complete, since nothing new is added
at the third round.

Note that we can also sensibly define the First set not just of a single symbol
but of an arbitrary sentential form t = x1x2 · · · xn (n ≥ 0): just replace A by t
in the definition on page 2. Once we have all the sets First(A), for any t we may
easily compute First(t) as follows:

1. Whenever we have a ∈ First(xi) where 1 ≤ i ≤ n, x1, . . . , xi�1 ∈ E, and
a 6= ε, put a ∈ First(t).

2. If x1, . . . , xn ∈ E, put ε ∈ First(t).

We will need certain such sets First(t) in order to construct the parse table.

Computing Follow sets

Follow sets are also calculated progressively; the algorithm makes use of First sets.

1. Begin with Follow (S) = {$} for the start symbol S, and Follow (A) = ∅ for all
other nonterminals.

2. For each rule that can be presented as A → tBx1 · · · xn for n ≥ 1, and each i
such that x1, . . . , xi�1 ∈ E, add all of First(xi), except ε, to Follow (B).

3. For each rule A → tB, or A → tBx1 · · · xn with x1, . . . , xn ∈ E, add all of
Follow (A) to Follow (B).

4. Repeat step 3 until all Follow sets stabilize.

This is generally rather trickier to carry out than the calculation of First sets. Let
us see how it works for our example. In step 1 we set Follow(shell) = {$} and
Follow(A) = ∅ for A = args, opts, files. Step 2 only yields anything in the case of
the production args → opts files: here we must add all of First(files) except ε to
Follow (opts), thus file ∈ Follow(opts). Moving on to step 3, we discover on the first
round that $ ∈ Follow(args), and on the second round that $ ∈ Follow(opts) and
$ ∈ Follow(files).

To summarize, the contents of the sets First(A) and Follow(A) for the grammar
G are as given by the following table:

3

Language Processing note 12 CS2 13.1.2003

G First Follow
shell command $
args option file ε $
opts option ε $ file
files file ε $

Building parse tables

Given the First and Follow sets for a grammar, constructing a parse table is rea-
sonably straightforward. Initially, every entry is empty; then for every production
A → t in the grammar:

• for each terminal a in First(t), put A → t in the table at row A, column a;

• if ε ∈ First(t), then for each b ∈ Follow (A) enter A → t in row A, column b.

Applying this procedure to our example, we obtain the following parse table:

G3 command option file $

shell command args

args opts files opts files opts files

opts option opts ε ε

files file files ε

For a given grammar, the fact that this method succeeds in constructing a
parse table with at most one production in each cell provides the final confirma-
tion that our grammar is indeed LL(1) and hence suitable for predictive parsing.
If the grammar suffers from ambiguities, common prefixes or left recursion, this
will typically show up in the fact that some cell contains two or more produc-
tions, so during parsing we will not know which of the competing productions
to apply. (There are even some grammars not suffering from any of these three
defects for which such clashes arise, though such grammars are unlikely to arise
in practice.) Of course, if clashes do arise in the parse table, then where they
arise can give us a useful hint on how we might “debug” the grammar.

Automatic lexer and parser generators

When any programming activity becomes repetitive, programmers naturally try
to get the machine to do it for them. So it is with writing lexers and parsers:
the formal theories of state machines and grammars give us sufficient insight to

4

Language Processing note 12 CS2 13.1.2003

write programs that will write our programs for us. The first lexer- and parser-
writing programs were written around 1970; the best known being lex and yacc
(“Yet Another Compiler Compiler”). Both of these generate C code and are still
in use today. They have several descendants and variants, so for example the
Linux systems here provide flex and bison. Other programming languages have
equivalent tools: for instance, for Java we have the tools JFlex and Java CUP.
More detailed information of these tools may be found at (respectively)

www.jflex.de www.cs.princeton.edu/~appel/modern/java/CUP

With tools like these, building a language processing system generally com-
prises three steps.

• Prepare a description of the tokens of the language. Give this to lex, or
similar, which will write some code for a lexer.

• Write a grammar for the language. Feed this to yacc, or similar, which will
write some code for a parser.

• Write some code to operate on a document once it has been read in.

These three pieces of code are then tied together and compiled to give the final
program. Usually the first two contain some large tables, with small general
engines to drive the lexing and parsing. They are often not very human-readable,
but that is not their aim.

Exercises

Revisit some of the examples of grammars from earlier lecture notes, and com-
pute the First and Follow sets, and hence the parse table, using the above
method. Check these against the parse table given in the notes.

It is also quite instructive to try this out on some of the examples of non-
LL(1) grammars (e.g. ambiguous grammars), so that you can see where the
clashes arise when we try to build the parse table.

Books

The following books may provide a useful supplement to the lecture notes for
the second half of this thread (context-free grammars and parsing). They may be
readily identified by the animals depicted on the cover.

Dragon book Aho, Sethi and Ullman, Compilers: Principles, Techniques and Tools.

Tiger book Appel, Modern Compiler Implementation in { C, Java, ML } .

Turtle book Aho and Ullman, Foundations of Computer Science.

John Longley 2002, Ian Stark 2001

5

