
Language Processing note 11 CS2 10.1.2003

CS2 Language Processing note 11

Fixing problems with grammars

In Note 10 of this thread, we mentioned three steps involved in the construction
of a parser for a given grammar G, and discussed the third of these steps (the
parsing algorithm) in some detail. In the present note, we will first discuss one
small detail of the parsing algorithm which we omitted in Note 10. The rest of the
note will then be devoted to the first of the three steps: the problem of eliminating
undesirable features from a grammar G in order to obtain an equivalent LL(1)
grammar G0. Once you have followed the material in this note, you should be
able to identify and correct various problems with grammars: ambiguity, common
prefixes and left recursion.

The end-of-input marker

Recall that in the parse tables we gave in Note 10, we had one row for each
nonterminal symbol of the grammar, and one column for each terminal symbol.
For the examples we gave, this was enough, but in general we need to include
one extra column, which we label with a special symbol $ called the end of input
marker. The purpose of this extra column is as follows. Just as the entry in the
table for a nonterminal A and a terminal a tells us which production to apply
if we are expecting an A and we see a as the next symbol, so the table entry
for A and $ tells us which production to apply if we are expecting an A and
we have encountered the end of the input. For many grammars (such as the
examples considered in Note 10), such a situation can never arise when parsing
well-formed sentences of the language; however, there are occasions when this
additional column is necessary, as the following example shows.

Consider the language consisting of sequences of zero or more occurrences of
the symbol x. We can give a context-free grammar for this language as follows:

S → ε | x S

Now consider how the algorithm of Note 10 should work for this language. If we
are expecting an S (that is, we have S on the top of the stack) and we encounter
an x in the input, it is clear that the production to apply is S → x S. However, if
we are expecting an S and we encounter the end of the input, this does not mean
we have a parsing error — it just means that the production we need to apply is
S → ε. The parse table for the above grammar therefore looks like this:

x $

S S → xS S → ε

1

Language Processing note 11 CS2 10.1.2003

Officially the parse tables in Note 10 should also have a column labelled $,
though in these cases this column should be empty.

To incorporate this modification into our parsing algorithm, we just need to
treat $ as an extra terminal symbol (which we assume is different from all the
existing terminals), and make sure we explicitly add $ at the end of the input
string. With this minor modification, the parsing algorithm works exactly as we
have described it in Note 10.

Ambiguity

We now move on to consider the question: how can we transform a grammar that
is not LL(1) (and hence not suitable for predictive parsing) into an equivalent
grammar that is? (“Equivalent” here means that the two grammars must define
the same language.) We examine in turn three common reasons why a grammar
might fail to be LL(1): it might suffer from ambiguity, common prefixes or left
recursion.

A grammar is said to be ambiguous if there is any sentence with more than
one parse tree. Any parser for an ambiguous grammar has to choose somehow
which tree to return. There are a number of solutions to this — e.g., the parser
could pick one arbitrarily, or we could provide some hints about which to choose
— but it is probably best to rewrite the grammar so that it is not ambiguous. Note
that no ambiguous grammar can be LL(1), since our parsing algorithm for LL(1)
grammars builds the only possible parse tree for a sentence in a deterministic
way. (In general, an ambiguity in a grammar will manifest itself in the fact that
there are two productions competing for the same cell in the parse table.)

There is no general method for removing ambiguity, and the best approach
is usually to step back and consider what language a grammar was intended to
capture in the first place. For example, here is a grammar for lists of arguments
to a function.

arguments → (list) list → arg | list,list

This is ambiguous because of the production list → list,list. Any sentence with
more than two variables, such as (arg, arg, arg), will have multiple parse trees. All
we need, though, is a grammar that can express “one or more comma-separated
occurrences of arg”. The following unambiguous grammar does just this.

arguments → (arg rest) rest → ε | ,arg rest

Figure 11.1 gives examples of how to carry out this construction in various situ-
ations.

Arithmetic expressions provide another standard example where what ap-
pears to be the simplest grammar turns out to be problematic.

E → E + E | E − E
| E ∗ E | E / E
| (E) | num

2

Language Processing note 11 CS2 10.1.2003

Ambiguous Language Unambiguous

A → B | AA Lists of one or more B ’s. A → BC
C → A | ε

A → B | AA | ε Lists of zero or more B ’s A → BA | ε
A → B | A; A Lists of one or more B ’s, A → BC

with punctuation. C → ;A | ε

Figure 11.1: Fixing some simple ambiguities in a grammar

A sentence like “num + num ∗ num − num” can be parsed many different ways,
each with a different parse tree. Seeing this as arithmetic, we know that the
“right” thing to do is the multiplication first, followed by the addition and then
the subtraction. But how can we capture this in a grammar?

One solution is to add fresh nonterminals that enforce precedence between
operators, and make them left associative. In the following equivalent grammar,
‘∗’ and ‘/’ bind more tightly than ‘+’ and ‘−’; and operators of equal binding
strength act from the left first.

E → E + T | E − T | T
T → T ∗ F | T / F | F
F → (E) | num

Here T stands for term, and F for factor. This is now unambiguous, and also
captures more precisely the usual arithmetic conventions on how to interpret
expressions like this.

Common prefixes and left factoring

Ambiguity is a problem for any parsing algorithm. The algorithm for predictive
parsing also has difficulties with various other features of grammars. For exam-
ple, consider the following productions describing the use of a loop command.

C → code | loop code while test
| loop code until test

There is no ambiguity here, but a predictive parser, trying to expand the non-
terminal C, cannot tell which production to choose when the next token is loop.
We fix this by left factoring the grammar: taking out the part common to the
conflicting productions, and delaying the point when a predictive parser has to
choose between them.

C → code | loop code T
T → while test | until test

The same technique can also be applied to the grammar given on page 3 of Note 9
(see Exercise 2 below).

3

Language Processing note 11 CS2 10.1.2003

Left recursion

A more serious problem for predictive parsing arises when a grammar is left
recursive. This means that there is some nonterminal A such that A ⇒� At for
some sentential form t. This will put a predictive parser into an endless loop, as
it repeatedly expands A without consuming any input tokens.

Left recursion can be systematically eliminated from any grammar. The sim-
plest case is immediate left-recursion, when it happens in a single step. Suppose
we have a left-recursive nonterminal A with the following productions

A → At1 | At2 | . . . | Atm | u1 | u2 | . . . | un
where t1, . . . , tm, u1, . . . , un are sentential forms and none of the ui begin with A.
As with ambiguous grammars, we do best to step back and try to read what this
grammar really means. In this case, an A can expand to some u followed by a
sequence of zero or more t ’s; for example as A ⇒� u2t3t4t3. With this reading, it
is possible to see that the following productions give an equivalent grammar.

A → u1A0 | u2A0 | · · · | unA0

A0 → t1A0 | t2A0 | · · · | tmA0 | ε

Now the nonterminal A generates the same set of strings but it is no longer
immediately left-recursive. (It is also fairly easy to eliminate “non-immediate”
forms of left recursion from a grammar, but we will not give the method here.)

The revised grammar for arithmetic expressions given above is not ambigu-
ous, but it is still left recursive. Applying the same method gives an equivalent
grammar that is suitable for predictive parsing.

E → T E0 E0 → + T E0 | − T E0 | ε
T → F T0 T0 → ∗ F T0 | / F T0 | ε
F → (E) | num

Unfortunately this also renders the grammar less comprehensible to the reader.
This is the price we pay for the (relative) simplicity of the LL(1) parsing algo-
rithm.

Exercises

1. Find two parse trees for the sentence (arg, arg, arg) under the first grammar
given on page 2. Then give the unique parse tree for the second grammar.

2. Apply left factoring to the grammar given on page 3 of Note 9, in order to
fix the “lookahead” problem discussed there and give a grammar suitable for
predictive parsing.

3. There are three grammars in this note for arithmetic expressions. Give parse
trees in each of them for the sentence num+num∗num. For the first, ambiguous,
grammar, you should find two different parse trees.

John Longley 2002, Ian Stark 2001

4

