
Inf2A: Tutorial Exercise 6

Anderson, Hutchins-Korte

Week 7 (2 Nov { 6 Nov 2009)

If possible, you should attempt to answer these questions

before your tutorial.

During the tutorial your tutor will discuss your answers with

you, and give assistance and feedback.

Pumping Lemma for CFLs

The use of the Pumping Lemma for CFLs is similar to that for FSAs. Usually we are looking

to establish that some language is not context-free by deriving a contradiction the assumption

the language is context-free. Review Kozen Lecture 22, pp 148-156.

Recall the statement of the Pumping Lemma For every CFL L, there exists a constant k ≥ 0
such that every z ∈ L such that the length of z is greater than or equal to k we can �nd strings

u, v,w, x, y such that z = uvwxy, vx 6= ε, the length of vwx is less than or equal to k, and for

all i ≥ 0 uviwxiy ∈ L
Decide whether the following languages are context-free and provide a justi�cation of your deci-

sion

1. {ambnambn | n,m ≥ 0}

2. Suppose b(n) ∈ {0, 1}∗ is the binary representation of the natural number n, and rev(t) is

the reverse of the string t (i.e. the last letter is �rst, second last second, ...) is the language

{b(n)#b(n+ 1) | n ≥ 0} context-free? (Due to Kozen).

3. {b(n)#rev(b(n+ 1)) | n > 0} (Also due to Kozen)

4. {anbnan | n ≥ 0}

Calculating First and Follow sets

In this section you are asked to calculate Firstk and Followk sets for a series of grammars. What

follows is a brief summary of the approach. For both Firstk and Followk sets there are a variety of

ways of techniques for calculating them. Here we construct successive approximations to the sets

taking the empty set as the initial approximation.

Calculating First Sets

Recall the de�nition of Firstk, for a particular grammar G = (N,Σ, P, S):

Firstk(α) = {t ∈ Σ∗ | α →∗G tβ and ‖t‖ = k or α →∗G t and ‖t‖ ≤ k}
In order to be able to calculate Firstk(α) for any α ∈ (N ∪ Σ)∗ we just need to calculate Firstk(A)

for each nonterminal A.
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Suppose we want to calculate First2 for each nonterminal in the grammar:

S’ → term$$

term → braces | parens braces → {list} list → term rest

parens → (list) list → x rest

rest →, list | ε

Then we construct a table where the successive columns are approximations to the Firstk sets for the

nonterminals. The initial approximation is that all the Firstk sets are empty. Suppose a nonterminal

A of G has m productions: A → α1 | . . . | αm then to get the next approximation of Firstk(A) we

set it to:

Firstk(A) = Firstk(α ′1) ∪ . . . ∪ Firstk(α ′m)

where α ′i is a set of strings derived from αi by substituting the current approximation for Firstk(B)

for each occurrence of each nonterminal B in αi. The following table illustrates this by successively

approximating First2 for the nonterminals of our example grammar.

Iteration 0 1 2 3 4 5 6 7

S’ ∅ ∅ ∅ ∅ ∅ {x (x {x (x {x (x {{ {( ({ ((

term ∅ ∅ ∅ ∅ {x (x {x (x {x (x {{ {( ({ (( {x (x {{ {( ({ ((

braces ∅ ∅ ∅ {x {x {x {x {{ {( {x {{ {(
parens ∅ ∅ ∅ (x (x (x (x ({ (( (x ({ ((

list ∅ ∅ x x x x, x {x (x x, x {x (x x, x {x (x x, {{ {( ({ ((

rest ∅ ε ε ε ,x ε ,x ε ,x ,{ ,( ε ,x ,{ ,( ε ,x ,{ ,(

Calculating Follow Sets

Calculating Followk sets is a similar process to that for Firstk sets. We begin by taking ∅ as the �rst
approximation to Followk(A) then we generate next approximation to Followk(A) by considering

each occurrence Bi → αiAβi of A on the Right Hand Side of a rule and computing the next

approximation of Followk(A) =
⋃

i Firstk(Firstk(βi)Followk(Bi)) using our calculated Firstk sets

and the current approximation of the Followk sets. The table below illustrates this by calculating

Follow1 for our example grammar. Note, we do not compute the Follow set for our new top symbol

S ′ because it cannot be followed by any symbol.

Iteration 0 1 2 3

S’

term ∅ $ , $ , $ , } )

braces ∅ ∅ $ , $ , } )

parens ∅ ∅ $ , $ , } )

list ∅ } ) } ) } )

rest ∅ ∅ } ) } )

Compute the First1 and Follow1 sets for the nonterminals of following grammars (assume upper

case letters are non-terminals and lower-case letters are terminals):

5.

S ′ → S$ S → SAB | SBC | ε

A → aAa | ε B → bB | ε C → cC | ε
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6.

S ′ → S$ S → ABS | BCS | ε

A → AA | a B → bB | ε C → cC | c

7.

S ′ → B$ B → T ∨ B | T | {B ⇒ B ; B}

T → F∧ T | F F → (B) | i

Checking if a grammar is LL(n)

8. For each of the above grammars:

(a) Check whether the grammar is LL(1).

(b) If the grammar is not LL(1), �rst check whether it is ambiguous. If it is ambiguous, give

a sentence with multiple parses in the language generated by the grammar.

(c) Finally, attempt to change the grammar so it is LL(1) and still generates the same lan-

guage as the original grammar.

9. Is the following grammar LL(k) for some k? If it is then �nd the least k for which it is LL(k):

S ′ → S$$$$$ S → AC | aaB

A → aA | ε B → bB | d C → b | cC

Constructing LL(1) parse tables

For each of the following grammars, construct an LL(1) parse table.

10.

S ′ → S$ S → NV

N → jN | n V → WN

W → aW | v

11.

S ′ → S$ S → ABS | BCS | ε

A → aaA | a B → bbbB | ε C → cC | c
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