
Module Title: Informatics 2A
Exam Diet: Dec 2016–17
Brief notes on answers:

1. (a) The state diagram for the obvious N is

0 1 2

any char

a
3 4

l l l a
5

[2 marks if correct, 1 mark if nearly correct.]

(b) The corresponding DFA N is:

0
a

01 02 013
l l l a

l

not l
anot l

l
not l,a

not l,a

l
not l,a

l

not l

014 025

[2 marks for correctly labelled states. 5 marks for transitions (roughly 1/3 mark
per transition.)]

(c) Run the longer string through M . Each time we enter an accepting state, signal
that there is an occurrence of lalla ending at the current read position. [1 mark]

2. (a) Bookwork. The Pumping Lemma states that every regular language L has the
following ‘pumping property’: there exists k ≥ 0 such that for any string xyz ∈ L
with |y| ≥ k, there is some decomposition of y as uvw with v 6= ε such that
xuviwz ∈ L for all i.

[2 marks for evidence of understanding; 3 marks for a fully correct statement.
The contrapositive form is also acceptable. But be fairly strict here in requiring
the order and type of the quantifiers to be correct.]

(b) A typical attempt at using the Pumping Lemma might run as follows: given
k ≥ 0, consider say x = am, y = bk, z = ε where m 6= k, so that xyz ∈ L.
Now given a decomposition y = uvw with v 6= ε, it need not be the case that |v|
divides m − k, and if not, we won’t be able to choose i such that xuviwz 6∈ L,
as this would require that uviw = bm.

[Up to 4 marks. A slightly non-standard question type, so award marks for
anything showing evidence of good understanding.]

(c) The language K = {ambn} is regular, and regular languages are closed under
complement and intersection. So if L were regular, then L′ ∩K = {anbn} would
also be regular, and we know from lectures that it is not.

[1 mark for appealing to closure under complement; 1 mark for appealing to
{anbn}; 1 mark for correct use of closure under intersection.]

3. The known words have one possible tag apiece, while each unknown word has three.
Hence we only need to consider the probabilities for the possible taggings of mimsy

i

and borogoves. Since these are not adjacent, it suffices to compute probability for the
following sequences:

MOD mimsy/MOD VB 0.5× 0.8× 0.2 = 0.08
MOD mimsy/NN VB 0.3× 0.5× 0.5 = 0.075
MOD mimsy/VB VB 0.2× 0.2× 0.0 = 0.0
DT borogoves/MOD STOP 0.3× 0.8× 0.0 = 0.0
DT borogoves/NN STOP 0.7× 0.5× 0.5 = .175
DT borogoves/VB STOP 0.0× 0.2× 0.1 = 0.0

The final tagging is: all/MOD mimsy/MOD were/VB the/DT borogoves/NN.

4. The two possible parses are:

S(% 1.0 x

NP(% 0.7 x

NN(Scientists)) % 0.3 x

VP(% 0.4 x <== different from below

VB(count) % 1.0 x

NP(% 0.7 x

NN(whales)) % 0.2 x

PP(% 1.0 x

Prep(from) % 1.0 x

NP(% 0.7 x

NN(space))))) % 0.5

% = .004116

with and:

S(% 1.0 x

NP(% 0.7 x

NN(Scientists)) % 0.3 x

VP(% 0.6 x <== different from above

VB(count) % 1.0 x

NP(% 0.3 x <== different from above

NP(% 0.7 x

NN(whales)) % 0.2 x

PP(% 1.0 x

Prep(from) % 1.0 x

NP(% 0.7 x

NN(space)))))) % 0.5

% = .0018522

The parser chooses the first parse, attaching the PP to the verb.

5. (a) There are many possible answers. Here’s one:

ii

S → NP VP
VP → VB ADVP-POS | NEG VB ADVP-NEG
NP → you | the film

NEG → did not
VB → like

ADVP-POS → somewhat
ADVP-NEG → at all

(b) Again, many possible answers. Example:

S → NP VP
VP → VB ADVP[POS] | NEG VB ADVP[NEG]
NP → you | the film

NEG → did not
VB → like

ADVP-POS → somewhat
ADVP-NEG → at all

(c) If the grammars are designed as above, they are equally expressive.

6. (a) The set E of potentially empty non-terminals is just {opts, qualifier, args}. The
First sets are:

First(args) = {ε, str} First(file) = {str ,−jar}
First(qualifier) = {ε, :,= First(opt) = {−}

First(opts) = {ε,−} First(command) = {java}

[1 mark for E, half a mark for each First set. These are all very easy.]

(b) The Follow sets are:

Follow(command) = {$} Follow(args) = {$}
Follow(file) = {str , $} Follow(opts) = {str ,−jar}
Follow(opt) = {−, str ,−jar} Follow(qualifier) = {−, str ,−jar}

[1 mark per Follow set. These are harder than the First sets.]

(c) The parse table is:

java − −jar : = str $
command java opts file args

opts opt opts ε ε
opt − str qualifier

qualifier ε ε : str = str ε
file −jar str str

args str args ε

[2 marks for a table of the right format, including column for $. Roughly half a
mark per correct entry. I expect it to be easy to get at least 5 marks, but quite
hard to get the full 9 marks.]

iii

(d) The computation proceeds as follows:

Operation Input remaining Stack
java str −jar str command

Lookup java, command java str −jar str java opts file args
Match java str −jar str opts file args

Lookup str , opts str −jar str file args
Lookup str , file str −jar str str args

Match str −jar str args
Lookup −jar, args

At this point, a blank entry in the table is encountered: ‘−jar found where args
expected’.

[5 marks for the course of computation, 1 mark for pinpointing the error.]

7. (a) The state diagram for N is:

b

a

b

a

b

c c

b

c c

[2 marks for a sensible array of states with the right start and accepting state.
3 marks for the right transitions.]

(b) In general, we should take N = (Q,∆, S, F) where:

• Q = Q0 ×Q1,

• ∆ = {((p0, p1), s, (q0, p1)) | (p0, s, q0) ∈ ∆0} ∪
{((p0, p1), s, (p0, q1)) | (p1, s, q1) ∈ ∆1},

• S = S0 × S1,

• F = F0 × F1.

[3 marks for ∆, 2 marks altogether for Q,S, F . Hopefully they will be able to
abstract from part (a) to arrive at the general definition.]

(c) For each a ∈ Σ, let La be the language {a}; then the interleaving of all these
languages is exactly L(Σ). Moreover, each La is regular, as shown by an obvious
two-state NFA. By applying the construction of (b) to all these NFAs, we obtain
an NFA for L(Σ) with 2|Σ| states.

[2 marks for noting that L(Σ) is the interleaving of the La. 1 mark for justifying
that each La is regular. 1 mark for invoking the construction of part (b). 1 mark
for the number of states.]

(d) An NFA is minimal if no two distinct states have the same associated language
(where the language associated with a state q is the set of strings that take us
from q to an accepting state). The NFA from (c) is indeed minimal: each state
corresponds to a subset S ⊆ Σ (the set of symbols that must appear in the

iv

string in order to arrive in that state). The associated language for such a state
consists of all strings listing the symbols of Σ − S in some order, and this is
clearly different for each subset S.

[2 marks for definition of minimality; 1 mark for saying the NFA is minimal; 2
marks for justification.]

(e) Given any k, let s = a2k. Then Ms has 2k+ 1 states, so M2
s has (2k+ 1)2 states.

However, in this case L2
s consists of just the single string a4k, so the minimal

DFA has 4k + 1 states. But (2k + 1)2 = 4k2 + 4k + 1 > 4k2 + k = k(4k + 1).

[2 marks for picking a suitable s dependent on k; 3 marks for the rest of the
argument.]

8. (a) Here’s a very simple solution, showing only one example for both NN and JJ
categories (the rest are similar).

S → a NP is JJ {∃x.NP.sem(x) ∧ JJ.sem(x)}
NN → table {λx.Table(x)}
JJ → blue {λx.Green(x)}

(b) Here’s a highly simplified solution. To correctly index nonterminals in the se-
mantic representation, we use coindexes; these are ignored in the syntax.

S → a NP1 and NP2 are JJ1 and JJ2 , respectively
{∃x.∃y.NP1.sem(x) ∧ JJ1.sem(x)NP2.sem(x) ∧ JJ2.sem(x)}

NN → table {λx.Table(x)}
JJ → blue {λx.Green(x)}

(c) The grammar below is linguistically dubious, but it produces the correct string
language.

S → a NN , RC , and JJ , respectively
RC → NN , RC , JJ | and NN are JJ
NN → table {λx.Table(x)}
JJ → blue {λx.Green(x)}

(d) No, because each sentence has a substring of the form NNm and NN are JJm

which can be shown by the pumping lemma to be non-regular. (It is obvious
context-free since we can write a CFG for it.)

(e) Suppose we have an RC with n items. Then the NN at depth 1 is related to the
JJ at depth n, the NN at depth 2 is related to the JJ at depth n− 1, and so on.
So this is not possible using any mechanism the students learned in class, since
these only relate items that appear in the same clause.

(f) Respectively resembles the cross-serial construction in Dutch and Swiss German:
it coordinates expressions in ways that violate the nesting of the context-free
derivation, though in this case, the string language itself is still context-free.

v

