Module Title: Informatics 2A Exam Diet: Dec 2016–17 Brief notes on answers:

1. (a) The state diagram for the obvious N is

[2 marks if correct, 1 mark if nearly correct.]

(b) The corresponding DFA N is:

[2 marks for correctly labelled states. 5 marks for transitions (roughly 1/3 mark per transition.)]

- (c) Run the longer string through M. Each time we enter an accepting state, signal that there is an occurrence of lalla ending at the current read position. [1 mark]
- 2. (a) Bookwork. The Pumping Lemma states that every regular language L has the following 'pumping property': there exists $k \geq 0$ such that for any string $xyz \in L$ with $|y| \geq k$, there is some decomposition of y as uvw with $v \neq \epsilon$ such that $xuv^iwz \in L$ for all i.

[2 marks for evidence of understanding; 3 marks for a fully correct statement. The contrapositive form is also acceptable. But be fairly strict here in requiring the order and type of the quantifiers to be correct.]

- (b) A typical attempt at using the Pumping Lemma might run as follows: given $k \geq 0$, consider say $x = a^m$, $y = b^k$, $z = \epsilon$ where $m \neq k$, so that $xyz \in L$. Now given a decomposition y = uvw with $v \neq \epsilon$, it need not be the case that |v| divides m k, and if not, we won't be able to choose i such that $xuv^iwz \notin L$, as this would require that $uv^iw = b^m$.
 - [Up to 4 marks. A slightly non-standard question type, so award marks for anything showing evidence of good understanding.]
- (c) The language $K = \{a^m b^n\}$ is regular, and regular languages are closed under complement and intersection. So if L were regular, then $L' \cap K = \{a^n b^n\}$ would also be regular, and we know from lectures that it is not.

[1 mark for appealing to closure under complement; 1 mark for appealing to $\{a^nb^n\}$; 1 mark for correct use of closure under intersection.]

3. The known words have one possible tag apiece, while each unknown word has three. Hence we only need to consider the probabilities for the possible taggings of mimsy

i

and *borogoves*. Since these are not adjacent, it suffices to compute probability for the following sequences:

MOD mimsy/MOD VB	$0.5 \times 0.8 \times 0.2 = 0.08$
MOD mimsy/NN VB	$0.3 \times 0.5 \times 0.5 = 0.075$
MOD mimsy/VB VB	$0.2 \times 0.2 \times 0.0 = 0.0$
DT borogoves/MOD STOP	$0.3 \times 0.8 \times 0.0 = 0.0$
DT borogoves/NN STOP	$0.7 \times 0.5 \times 0.5 = .175$
DT borogoves/VB STOP	$0.0 \times 0.2 \times 0.1 = 0.0$

The final tagging is: all/MOD mimsy/MOD were/VB the/DT borogoves/NN.

4. The two possible parses are:

```
S(
                             % 1.0 x
                             % 0.7 x
  NP(
    NN(Scientists))
                             % 0.3 x
                             % 0.4 x
  VP(
                                      <== different from below
    VB(count)
                             % 1.0 x
    NP(
                             % 0.7 x
      NN(whales))
                             % 0.2 x
    PP(
                             % 1.0 x
      Prep(from)
                             % 1.0 x
      NP(
                             % 0.7 x
        NN(space)))))
                             % 0.5
                             % = .004116
```

with and:

```
S(
                             % 1.0 x
 NP(
                             % 0.7 x
    NN(Scientists))
                            % 0.3 x
  VP(
                            % 0.6 x
                                     <== different from above
    VB(count)
                            % 1.0 x
    NP(
                            % 0.3 x
                                      <== different from above
     NP(
                            % 0.7 x
       NN(whales))
                            % 0.2 x
     PP(
                            % 1.0 x
       Prep(from)
                            % 1.0 x
       NP(
                            % 0.7 x
                            % 0.5
         NN(space))))))
                            % = .0018522
```

The parser chooses the first parse, attaching the PP to the verb.

5. (a) There are many possible answers. Here's one:

$$S \rightarrow NP \ VP$$

$$VP \rightarrow VB \ ADVP-POS \ | \ NEG \ VB \ ADVP-NEG$$

$$NP \rightarrow you \ | \ the \ film$$

$$NEG \rightarrow did \ not$$

$$VB \rightarrow like$$

$$ADVP-POS \rightarrow somewhat$$

$$ADVP-NEG \rightarrow at \ all$$

(b) Again, many possible answers. Example:

$$\begin{array}{c} S \rightarrow NP\ VP \\ VP \rightarrow VB\ ADVP[POS] \ |\ NEG\ VB\ ADVP[NEG] \\ NP \rightarrow you \ |\ the\ film \\ NEG \rightarrow did\ not \\ VB \rightarrow like \\ ADVP-POS \rightarrow somewhat \\ ADVP-NEG \rightarrow at\ all \end{array}$$

- (c) If the grammars are designed as above, they are equally expressive.
- 6. (a) The set E of potentially empty non-terminals is just {opts, qualifier, args}. The First sets are:

[1 mark for E, half a mark for each First set. These are all very easy.]

(b) The *Follow* sets are:

$$\begin{array}{lll} Follow(\mathsf{command}) &=& \{\$\} & Follow(\mathsf{args}) &=& \{\$\} \\ Follow(\mathsf{file}) &=& \{str,\$\} & Follow(\mathsf{opts}) &=& \{str,-\mathtt{jar}\} \\ Follow(\mathsf{opt}) &=& \{-,str,-\mathtt{jar}\} & Follow(\mathsf{qualifier}) &=& \{-,str,-\mathtt{jar}\} \end{array}$$

[1 mark per Follow set. These are harder than the First sets.]

(c) The parse table is:

	java	_	$-\mathtt{jar}$:	=	str	\$
command	java opts file args						
opts		opt opts	ϵ			ϵ	
opt		$-\ str$ qualifier					
qualifier		ϵ	ϵ	: str	= str	ϵ	
file			$-\mathtt{jar}\;str$			str	
args						$str\ {\it args}$	ϵ

[2 marks for a table of the right format, including column for \$. Roughly half a mark per correct entry. I expect it to be easy to get at least 5 marks, but quite hard to get the full 9 marks.]

(d) The computation proceeds as follows:

Operation	Input remaining	Stack	
	$\mathtt{java}str-\mathtt{jar}str$	command	
Lookup java, command	$\mathtt{java}str-\mathtt{jar}str$	java opts file args	
Match java	$str-\mathtt{jar}str$	opts file args	
Lookup str , opts	$str-\mathtt{jar}str$	file args	
Lookup str , file	$str-\mathtt{jar}str$	str args	
Match str	$-\mathtt{jar}str$	args	
Lookup - jar, args			

At this point, a blank entry in the table is encountered: '-jar found where args expected'.

[5 marks for the course of computation, 1 mark for pinpointing the error.]

7. (a) The state diagram for N is:

[2 marks for a sensible array of states with the right start and accepting state. 3 marks for the right transitions.]

- (b) In general, we should take $N = (Q, \Delta, S, F)$ where:
 - $\bullet \ Q = Q_0 \times Q_1,$
 - $\Delta = \{((p_0, p_1), s, (q_0, p_1)) \mid (p_0, s, q_0) \in \Delta_0\} \cup \{((p_0, p_1), s, (p_0, q_1)) \mid (p_1, s, q_1) \in \Delta_1\},$
 - $S = S_0 \times S_1$,
 - $\bullet \ F = F_0 \times F_1.$

[3 marks for Δ , 2 marks altogether for Q, S, F. Hopefully they will be able to abstract from part (a) to arrive at the general definition.]

- (c) For each $a \in \Sigma$, let L_a be the language $\{a\}$; then the interleaving of all these languages is exactly $L(\Sigma)$. Moreover, each L_a is regular, as shown by an obvious two-state NFA. By applying the construction of (b) to all these NFAs, we obtain an NFA for $L(\Sigma)$ with $2^{|\Sigma|}$ states.
 - [2 marks for noting that $L(\Sigma)$ is the interleaving of the L_a . 1 mark for justifying that each L_a is regular. 1 mark for invoking the construction of part (b). 1 mark for the number of states.]
- (d) An NFA is minimal if no two distinct states have the same associated language (where the language associated with a state q is the set of strings that take us from q to an accepting state). The NFA from (c) is indeed minimal: each state corresponds to a subset $S \subseteq \Sigma$ (the set of symbols that must appear in the

string in order to arrive in that state). The associated language for such a state consists of all strings listing the symbols of $\Sigma - S$ in some order, and this is clearly different for each subset S.

[2 marks for definition of minimality; 1 mark for saying the NFA is minimal; 2 marks for justification.]

- (e) Given any k, let $s = a^{2k}$. Then M_s has 2k + 1 states, so M_s^2 has $(2k + 1)^2$ states. However, in this case L_s^2 consists of just the single string a^{4k} , so the minimal DFA has 4k + 1 states. But $(2k + 1)^2 = 4k^2 + 4k + 1 > 4k^2 + k = k(4k + 1)$. [2 marks for picking a suitable s dependent on k; 3 marks for the rest of the argument.]
- 8. (a) Here's a very simple solution, showing only one example for both NN and JJ categories (the rest are similar).

```
S \to a \text{ NP is JJ } \{\exists x.NP.sem(x) \land JJ.sem(x)\}

NN \to \text{table } \{\lambda x.\text{TABLE}(X)\}

JJ \to \text{blue } \{\lambda x.\text{GREEN}(X)\}
```

(b) Here's a highly simplified solution. To correctly index nonterminals in the semantic representation, we use coindexes; these are ignored in the syntax.

```
S \to a \text{ NP}_1 \text{ and NP}_2 \text{ are JJ}_1 \text{ and JJ}_2, respectively \{\exists x.\exists y. NP_1.sem(x) \land JJ_1.sem(x)NP_2.sem(x) \land JJ_2.sem(x)\} NN \to \text{table } \{\lambda x.\text{Table}(x)\} JJ \to \text{blue } \{\lambda x.\text{Green}(x)\}
```

(c) The grammar below is linguistically dubious, but it produces the correct string language.

```
S \rightarrow a \ NN \ , RC \ , and JJ \ , respectively RC \rightarrow NN \ , RC \ , JJ \ | and NN are JJ NN \rightarrow table \{\lambda x.Table(x)\}
JJ \rightarrow blue \{\lambda x.Green(x)\}
```

- (d) No, because each sentence has a substring of the form NN^m and NN are JJ^m which can be shown by the pumping lemma to be non-regular. (It is obvious context-free since we can write a CFG for it.)
- (e) Suppose we have an RC with n items. Then the NN at depth 1 is related to the JJ at depth n, the NN at depth 2 is related to the JJ at depth n-1, and so on. So this is not possible using any mechanism the students learned in class, since these only relate items that appear in the same clause.
- (f) Respectively resembles the cross-serial construction in Dutch and Swiss German: it coordinates expressions in ways that violate the nesting of the context-free derivation, though in this case, the string language itself is still context-free.