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PART A

1. This question concerns the language below.

L = {xx | x ∈ Σ∗}

In other words, L is the set of all strings produced by concatenating some string
x with itself.

(a) In the case that Σ = {a}, show that L is regular. [2 marks ]

(b) In the case that Σ = {a, b}, use the pumping lemma to prove that L is not
regular. [7 marks ]

(c) In the case that Σ = {a, b}, where does the language L reside in the Chomsky
hierarchy? [1 mark ]

2. Consider the following simplified lexical classes for integer and floating-point
literals, specified using the egrep pattern language.

INT-LIT = [0-9]+

FLT-LIT = [0-9]*(\.)[0-9]+

In Haskell, the expression:

[7..10]

(which defines the integer list [7,8,9,10]) has the following lexing.

[ 7 .. 10 ]

[ INT-LIT OP INT-LIT ]

Here, the lexemes appear on the top row, with their lexical classes positioned
beneath them. These lexical classes include singleton classes [ and ], for opening
and closing list brackets, and a lexical class OP of binary operators.

In answering the questions below, refer only to lexical classes mentioned above.

(a) What is the lexing of the Haskell expression below?

[7.10] [1 mark ]

Explain what happens at the following stages of the lexing process, when lexing
the seven-character expression ‘ [7..10] ’ .

(b) After the second character (‘ 7 ’) has been read. [3 marks ]
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(c) After the third character (the first ‘ . ’) has been read (for the first time). [3 marks ]

(d) After the fourth character (the second ‘ . ’) has been read (for the first
time). [3 marks ]

3. Use the Viterbi algorithm to compute the most probable POS tagging for the
word sequence

fat orange ducks

using transition and emission probabilities as follows:

to N to V to A
from start 0.5 0.2 0.3

from N 0.3 0.6 0.1
from V 0.8 0.2 0.2
from A 0.6 0.1 0.3

Transitions

fat orange ducks
N 0.2 0.3 0.5
V 0.0 0.0 0.2
A 0.4 0.5 0.0

Emissions

Show your working and include backtrace pointers in your Viterbi matrix. [10 marks ]

4. (a) The three main parsing algorithms considered in the course are the LL(1),
CYK and Earley algorithms. State which of these are top-down algorithms,
and which are bottom-up. [2 marks ]

(b) State one potential advantage of Earley parsing over CYK parsing in the
context of natural language processing. [1 mark ]

(c) Consider the context-free grammar

S → NP VP
NP → N | the N
VP → V | V N

where S is the start symbol, and N, V are terminals referring respectively to
the class of nouns (e.g. things) and that of verbs (e.g. happen).

Use the Earley algorithm to parse the sentence things happen. You should
show the execution of the algorithm as a table with a row for each step.
Each row should include the start and end position of the portion of input
processed, and a letter to indicate whether the step is due to the predictor,
scanner or completer. For example, the first row of your table should be

S → • NP VP [0,0] P
[7 marks ]
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5. Consider the following context-free grammar, which generates English sentences
with reflexive pronouns as objects:

S → NP VP
NP → Anna | Bill
NP → Det N
VP → V Refl
Det → every | some

N → girl | boy | robot
V → hides | washes

Refl → herself | himself | itself

(a) In English, reflexive pronouns are required to agree with their subjects in
gender/animacy. As it stands, the above grammar generates sentences that
do not respect this rule, such as ‘Every boy washes itself’. Construct a
parameterized version of the above context-free grammar that enforces this
rule with the help of a suitable attribute. You should not parameterize any
more of the non-terminals than is necessary. [6 marks ]

(b) Returning to the original version of the grammar, we now consider a compo-
sitional semantics for the language, in which phrases of category V, VP and
NP are interpreted by terms of type <e,<e, t>>, <e, t>, and <<e, t>, t>
respectively. The following are two of the clauses from the definition of such
a semantics:

S → NP VP {NP.Sem(VP.Sem)}
NP → Bob {λP.P (Bob)}

V → washes {λy.λx.Washes(x, y)}

Write down a semantic attachment for the production VP→ V Refl that fits
with these clauses and captures the usual meaning of this construction. Also
write down the logical formula (in β-normal form) that you would expect to
obtain as the interpretation of the sentence

some robot washes itself

(note that you have not been given all the clauses that would be needed to
derive this formally). [4 marks ]
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PART B

6. The pushdown automata (PDAs) presented in lectures used empty stack as the
acceptance condition. In this question we consider a version of PDAs that instead
accept if an accepting control state is reached at the end of the input. There is
no requirement for the stack to empty.

Such a variant PDA, for a given alphabet Σ, is specified by the usual data required
for a PDA (a finite set Q of control states, a start control state s ∈ Q, a finite
stack alphabet Γ, a start stack symbol ⊥ ∈ Γ, and finite transition relation ∆)
together with one extra component:

• A finite set of accepting control states F ⊆ Q.

As usual, we write transitions in ∆ in the form

q
c, v : α−−−−−→ q′

meaning that when the automaton is in control state q ∈ Q and v ∈ Γ is popped
from the top of the stack, the input symbol or empty string c ∈ Σ ∪ {ε} can be
read to reach control state q′ ∈ Q with α ∈ Γ∗ pushed back onto the stack.

A run of such a variant PDA on a string x ∈ Σ∗ is accepting if the PDA ends up
in some control sate q ∈ F , having read the entire input string x.

Henceforth in this question, ‘PDA’ will always mean PDA with accepting states.
Nondeterministic PDAs of this kind recognise exactly the context-free languages.

(a) Consider a PDA with two control states Q = {p1, p2}, start state p1, input
alphabet Σ = {a, b}, stack alphabet Γ = {⊥, a}, start stack symbol ⊥, a
single accepting control state F = {p2}, and transition relation:

p1
a,⊥ : a−−−−−→ p1 p1

a, a : a a−−−−−−→ p1

p1
ε, a : a−−−−−−→ p2 p2

b, a : ε−−−−−−→ p2

Describe in detail an execution of this PDA that accepts the string

a a a b

[6 marks ]

(b) Give a concise mathematical description of the language recognised by the
PDA of part (a). [2 marks ]

Let M1 = (Q1, s1,Γ,⊥, F1,∆1) be a PDA over Σ as defined above. Let M2 =
(Q2, s2, F2,∆2) be a nondeterministic finite automaton (NFA) over the same al-
phabet Σ (for simplicity we assume that M2 has a single start state s2). We
construct a new PDA M = (Q, s,Γ,⊥, F,∆) as follows.

QUESTION CONTINUES ON NEXT PAGE
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QUESTION CONTINUED FROM PREVIOUS PAGE

Q = Q1 ×Q2 s = (s1, s2) F = F1 × F2 ,

and the set ∆ of transitions contains:

• (q1, q2)
c, v : α−−−−−→ (q′1, q

′
2) obtained by pairing transitions q1

c, v : α−−−−−→ q′1 in ∆1

with transitions q2
c−→ q′2 in ∆2 that use the same character c,

• and also (q1, q2)
ε, v : α−−−−−→ (q′1, q2), for every transition q1

ε, v : α−−−−−→ q′1 in ∆1.

We call the PDA M constructed from M1 and M2 in this way the product PDA.

(c) Let M1 be the PDA from part (a), and let M2 be the NFA below.

Write out the start state s, set of accepting states F , and transition relation
∆ of the product PDA constructed from M1 and M2. [8 marks ]

(d) Give a consise mathematical description of the language recognised by the
product PDA obtained in part (c). [2 marks ]

(e) Outline an argument for why the statement below is true.

If L1 is a context-free language and L2 is a regular language then
the intersection L1 ∩ L2 is also a context-free language. [4 marks ]

(f) Using the pair of languages below as a counterexample, show that context-
free languages are not closed under intersection.

L1 = {ambncn | m,n ≥ 0} L2 = {ambmcn | m,n ≥ 0}

[3 marks ]
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7. The following is a grammar for a very simple class of logical expressions, contain-
ing operations written in textual form. The terminals are

and not ( ) var

where var represents a lexical class of boolean variables (e.g. p, q, r, . . . ). The
grammar implements bracketed expressions, where and is a binary infix operation,
and not is a unary prefix operation, which binds more tightly than and.

Exp → Exp1 Ops

Ops → ε | and Exp1 Ops

Exp1 → var | (Exp) | not Exp1

(a) This grammar is LL(1). Write out its parse table. (You do not need to
explain how you obtain the parse table. In particular, you are not required
to say what the first and follow sets of the nonterminals are.) [6 marks ]

(b) Describe the step-by-step execution of the LL(1) predictive parsing algo-
rithm, in parsing the expression below using your parse table, where p, q are
boolean variables.

not p and q

[7 marks ]

Polish notation is an alternative notation for expressions, which has the advantage
that every expression can be unambiguously specified without brackets. In Polish
notation, operations precede their arguments. So, for example, the bracketed
expression not ( p and q ) and r is expressed in Polish notation by:

and not and p q r

The next part of the question considers how the approach to semantics, used
for natural languages, can be applied to the grammar above to translate logical
expressions into Polish notation. To this end, we equip the grammar with se-
mantic clauses, whose effect is to compute an expression in Polish notation as
the meaning of an Exp expression.

Exp → Exp1 Ops { Ops.Sem (Exp1.Sem) }
Ops → ε { λx.x }
Ops → and Exp1 Ops { λx. Ops.Sem (and x Exp1.Sem) }

Exp1 → p { p }
Exp1 → (Exp) {Exp.Sem}
Exp1 → not Exp1 {not Exp1.Sem}

Note that the semantics of a boolean variable p is just the variable p itself.
QUESTION CONTINUES ON NEXT PAGE
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QUESTION CONTINUED FROM PREVIOUS PAGE

(c) Draw the syntax tree for the expression

not p and q

leaving plenty of room for annotations. Starting at the bottom of the tree,
annotate each node with the raw lambda-expression assigned to it by the
semantics defined in the table above. [6 marks ]

(d) Show the sequence of β-reductions by which the lambda-expression associ-
ated with the root of this tree reduces to a normal form. [3 marks ]

(e) Write out an LL(1) grammar that generates the language of logical expres-
sions in Polish notation that can result from the translation process above.

[3 marks ]
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8. Consider the following corpus of five parsed sentences, in which the symbols

S NP VP PP Det Nom V Prep

are used as non-terminals, and English words appear as terminals.

• (S (NP I) (VP (V saw) (NP (Det a) (Nom (Nom dog)
(PP (Prep on) (NP (Det the) (Nom beach)))))))

• (S (NP (Det the) (Nom dog)) (VP (V saw) (NP me)))

• (S (NP I) (VP (V saw) (NP (Det a) (Nom (Nom stick)
(PP (Prep in) (NP (Det the) (Nom sand)))))))

• (S (NP I) (VP (VP (V threw) (NP (Det the) (Nom stick)))
(PP (Prep towards) (NP (Det the) (Nom sea)))))

• (S (NP (Det the) (Nom dog)) (VP (V caught) (NP (Det the) (Nom stick))))

(a) Extract the set of production rules that are used to generate the above
sentences from the start symbol S, leaving space for adding probabilities.
Then use the above corpus to assign a probability to each rule. [10 marks ]

(b) Explain what it means for a context-free grammar to be in Chomsky Normal
Form (CNF). State whether or not your grammar from part (a) is in CNF. [2 marks ]

(c) Using the rule probabilities from part (a), compute the probability of the
second sentence in the corpus (‘the dog saw me’). [3 marks ]

(d) Again using the probabilities from part (a), one may now apply the proba-
bilistic CYK algorithm to find the most probable parse tree for the sentence

I caught the dog in the sea

Construct the CYK parse chart that results from doing this, including point-
ers where necessary to show the origin of each non-terminal in the chart.
You need not actually compute the probabilities for the entries, but in any
situation where a choice between two analyses arises, you should provide a
justification for which is the most probable. [10 marks ]
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