UNIVERSITY OF EDINBURGH
COLLEGE OF SCIENCE AND ENGINEERING
SCHOOL OF INFORMATICS

INFRO08008 INFORMATICS 2A: PROCESSING FORMAL AND
NATURAL LANGUAGES

Monday 9 December 2013

09:30 to 11:30

INSTRUCTIONS TO CANDIDATES

. Answer all five questions in Part A, and two out of three questions in
Part B. Each question in Part A is worth 10% of the total exam mark;
each question in Part B is worth 25%.

. Use a single script book for all questions.

. Calculators may be used in this exam.

Convener: J. Bradfield
External Examiner: C. Johnson

THIS EXAMINATION WILL BE MARKED ANONYMOUSLY

PART A
ANSWER ALL QUESTIONS IN PART A.

1. (a) Explain briefly what is meant by a language processing pipeline. List, in
order, the stages in a typical such pipeline (i) for the Java programming
language, and (ii) for spoken English. You need not mention all possible
stages in the pipeline, but should include at least four important stages in
each list. [6 marks]

(b) Mention two important differences in nature between formal and natural
languages. Briefly explain what impact these differences have on the way
such languages must be processed. [4 marks]

2. For each n > 1 consider the language L,,, over the alphabet ¥ = {a, b, ¢}, defined
below.

L, = {x € ¥* | |z] > n and the nth symbol from the end of z is a}

For example, the strings aa, ab and bac are in Ls, but a and aca are not. And
the string cabeb is in Ly, but caba is not.

(a) Draw an NFA that recognises the language L. [4 marks]
(b) Draw a minimal DFA recognising the language L. [5 marks]
(¢) For n > 1, how many states does a minimal DFA for L,, have? [1 mark]

3. Consider the following simple context-free grammar for commands in English.
The start symbol is Com.

Com — give NP NP
NP — DT Nom
Nom — N| AN
DT — the | a
N — dog | bone
A — large | small

(a) Convert this grammar to Chomsky Normal Form (CNF). You need not write
out the productions with left hand side DT, N or A, which will remain
unchanged. [4 marks]

(b) With respect to your CNF grammar, draw a CYK parse chart for the com-
mand:

give the dog a bone

Include pointers to show how each compound phrase is built from smaller
phrases. [6 marks]

Page 1 of 6

4. In the following context-free grammar, each rule is equipped with a semantic at-
tachment showing how the corresponding phrases may be translated to lambda-
expressions involving logical symbols and connectives. Note that Rains and
Snows are propositional constants (i.e. predicate symbols with no arguments).
The start symbol is BigS.

BigS — SifS { S2.Sem = S;.Sem}
S — it WeatherV { WeatherV.Sem}
WeatherV — rains { Rains }
WeatherV — snows { Snows }
S — thereis NP { 3x.NP.Sem(x) }
NP — a Nom { Nom.Sem}
Nom — AN { Ay.A.Sem(y) AN.Sem(y) }
A — serious { Az. Serious(z) }

N — problem { Az. Problem(z) }

(a) Draw the parse tree for the following sentence, allowing plenty of room for
annotations:

there is a serious problem if it snows

Starting from the leaves of the tree and working upwards, annotate each
node with the raw lambda-expression assigned to it by the above semantics.
[6 marks]

(b) Show how the lambda-expression associated with the complete sentence
above (-reduces in several steps to a logical expression in normal form.
You should show each (-reduction step explicitly. [4 marks]

5. (a) Consider the following noncontracting grammar, with terminals ¥ = {a, b, !};
nonterminals S (the start symbol), T, A and B; and productions
S—IT aA— Aa
T— Aa|Bb|AaT |BbT aB— Ba
A — al bA— Ab
'B— b! bB— Bb

Give a full derivation of:
ablab

[7 marks]

(b) Give a concise mathematical description of the language generated by the
grammar in part (a). [2 marks]

(c¢) At which level does this language reside in the Chomsky hierarchy? [1 mark]

Page 2 of 6

6.

PART B
ANSWER TWO QUESTIONS FROM PART B.

(a)

Consider the following list of different types of machine.

i. Deterministic finite automata
ii. Nondeterministic pushdown automata
iii. Nondeterministic linear bounded automata
iv. Turing machines
For each machine type in the above list, name the class of languages recog-

nised by machines of that type, and give an example of a language in the
class that cannot be recognised by any machine type higher up the list.

Consider a pushdown automaton (PDA) with two control states @ = {q1, ¢2},
start state ¢l, input alphabet ¥ = {a,b}, stack alphabet ' = {a,b, L}
(where L is the start symbol), and transition relation:

q]_ a,l:al ql q]_ b, L:bbl ql q2 e, l:bl ql
ql a,a:aa ql ql ba:e q2 q2 €, a:€ ql
ql a,b:e ql ql b,b:bbb ql ql €, L:e ql

The automaton accepts on empty stack. (In the above description, we use
the general notation
s, T« ’

q — 4
to mean that when the automaton is in control state ¢ € @ and z € T’
is popped from the top of the stack, the input symbol or empty string
s € X U {e} can be read to reach control state ¢ € @ with a € T'™* pushed
onto the stack.)

Describe in detail an execution of the above PDA that accepts the string

aaabba

Give a concise mathematical definition of the language L recognised by the
PDA above.

Prove that the language L, defined in your answer to (c¢) above, cannot be
recognised by any deterministic finite automaton.

Page 3 of 6

(8 marks]

(8 marks]
[2 marks]

[7 marks]

7. The following is part of a grammar for generating simple cookery instructions:

S — place NP PP | remove NP from NP
NP — Noun | NP PP
PP — Prep NP

The start symbol is S. The terminal symbols Noun and Prep stand for word classes
as follows:

(a)

(b)

Noun: { chips, burgers, tray, plate, oven }
Prep: { in, on, with }

Draw all possible parse trees for the phrase:

place chips on tray in oven

Treating the symbols Noun and Prep as terminals, use the Farley algorithm
to parse the sequence

place Noun Prep Noun

You should show the execution of the algorithm as a table with a row for
each step. Each row should include the start and end position of the portion
of input processed, and a letter P, S or C to indicate whether the step is due
to the predictor, scanner or completer. To get you started, the first row of
your table should be

S — e place NP PP [0,0] p

You need not include all possible steps, but you should include all steps that
contribute to a successful parse, and at least two that do not. You should
explicitly mark the latter steps as ‘spurious’.

One possible method for resolving ambiguities in context-free grammars is
to attach a probability weighting to each production rule, and then select
the parse tree with the highest overall probability. Could this approach be
used to select a preferred parsing for the above phrase? Briefly justify your
answer.

Another possible way to resolve ambiguities is to rewrite the grammar. De-
sign an LL(1) grammar that is equivalent to the one above (again treating
Noun and Prep as terminals). You may introduce new non-terminal symbols
if they are helpful.

Draw up the LL(1) parse table for your grammar. (You need not exhibit
the First and Follow sets as part of your solution.)

Page 4 of 6

[2 marks]

[9 marks]

[2 marks]

[5 marks]

[7 marks]

8. In this question, we will consider an example of POS tagging using the following
six tags, representing singular and plural nouns, third person singular and plural
present-tense verbs, adjectives and adverbs:

Ns Np Vs Vp Adj Adv

We will also consider six words, to each of which is associated a stem and two or
more parts of speech as follows:

(a)

Word | Stem | Parts of speech
fast | fast | Ns, Vp, Adj, Adv
fasts | fast | Np, Vs

hold | hold | Ns, Vp

holds | hold | Np, Vs

hook | hook | Ns, Vp

hooks | hook | Np, Vs

Draw the state diagram for a non-deterministic finite state transducer which
accepts as input any of the above six words (as a sequence of letters) fol-
lowed by the word boundary marker #, and which can produce as output
the corresponding stem followed by any of the possible POS tags for the
word. For example, given the input string ‘hold#’, the transducer should
be capable of producing either ‘hold Ns’ or ‘hold Np’ as output (and nothing
else).

The input alphabet for the transducer should be { a,...z,# }, while the
output alphabet should be { a,...,z } together with the set of six POS tags
(we regard each POS tag as a single output symbol).

Finally, your transducer should have as few states as possible for the task
it performs. However, you will not be penalized heavily if your transducer
has just a few more states than necessary.

We will now work towards tagging the sequence:
hook holds fast

In this part of the question, we shall consider the simpler problem of tagging
the corresponding sequence of stems:

hook hold fast
using just the reduced tagset N, V, Adj, Adv.

Page 5 of 6

[11 marks]

Use the Viterbi algorithm to tag this sequence, using the following transition
and emission probabilities:

toN toV toAdj to Adv
from start | 0.6 0.2 0.1 0.1
from N |04 03 0.1 0.2
from V | 0.3 0.2 0.2 0.3
from Adj | 0.5 0.1 0.3 0.1
from Adv [0.2 0.5 0.1 0.2

fast hold hook
0.2 03 0.5
0.2 05 0.3
Adj | 1.0 O 0
Adv | 1.0 O 0

<Z

.. Emissions
Transitions

Show your working, and include explicit backtrace pointers in your Viterbi
matrix. [10 marks]

(¢) Explain how the techniques from parts (a) and (b) can be combined to pro-
duce taggings for word sequences using our original set of six tags. Illustrate
the method by tagging the sequence:

hook holds fast [4 marks]

Page 6 of 6

