
Module Title: Informatics 2A
Exam Diet (Dec/April/Aug): Dec 2012 2012–13
Brief notes on answers:

PART A

1. (a) Regular, context-free, context-sensitive, unrestricted languages.

(b) English theoretically allows arbitrary deep nesting, as in

Jack built the house.
Jack built the house the malt lay in.
Jack built the house the malt the rat ate lay in.
. . .

In these sentences, a sequence of n noun phrases (after ‘Jack built’) must be
followed by n − 1 verbs for the sentence to be admissible. But the language
{anbn−1 | n ≥ 1} is a classic example of a non-regular language (proof by pump-
ing lemma).

(c) Context-sensitive languages are believed to be sufficient.

2. (a) (i). 1 state accepting.

(ii). 1 state non-accepting.

(iii). 2 states, one accepting.

(b) Minimize both M1 and M2. Check whether the minimal automata are isomor-
phic.

3. The Viterbi matrix is

man bites dog
N 0.6x0.5 = 0.3 ← 0.3x0.5x0.2 = 0.03, ↙ 0.06x0.8x0.3 = 0.0144

since 0.3x0.5 > 0.16x0.8 since 0.03x0.5 < 0.06x0.8
V 0.4x0.4 = 0.16 ↖ 0.3x0.5x0.4 = 0.06 ↖ 0.03x0.5x0.2 = 0.003

since 0.3x0.5 > 0.16x0.2 since 0.03x0.5 > 0.06x0.2

So the most probable tag sequence is NVN.

4. (a) The parse trees are those represented by

(S Which (NP (N orange)) (VP (V flies) like (N bananas)) ?)

(S Which (NP (A orange)(N flies)) (VP (V like)(N bananas)) ?)

The first has probability 1.0 x 0.7 x 0.3 x 0.1 x 0.3 x 0.3 = 0.00189

The second has probability 1.0 x 0.3 x 1.0 x 0.4 x 0.9 x 0.4 x 0.3 = 0.01296

(b) To take account of singular/plural distinctions, the phrase categories NP, VP, N,
V should be parameterized on a number attribute with values s, p. A complete
solution (not asked for here) would be:

S → Which NP[x] VP[x] ?
NP[x] → N[x] | A N[x]
VP[x] → V[x] N[p] | V[x] like N[p]

N[s] → orange
N[p] → flies | bananas
V[s] → flies | throws
V[p] → like

A → orange

i

5. (a) The format is α→ β where α, β ∈ (Σ∪N)∗, α contains at least one nonterminal
and |α| ≤ |β|.

(b) Underlining the sequence to be expanded on the next line:

S ⇒ exp = 0 As

⇒ exp = 0 A As

⇒ exp = 0 A A

⇒ exp = A 0 0 A

⇒ exp 0 = 0 0 A

⇒ exp 0 = 0 A 0 0

⇒ exp 0 = A 0 0 0 0

⇒ exp 0 0 = 0 0 0 0

(c) The language is:
{exp 0n = 02n | n ≥ 1}

ii

PART B

6. (a) The smallest DFA has 3 states, 1 of them accepting.

(b) The equations are:

X0 = 1X1 +−1X2 + ε

X1 = 1X2 +−1X0

X2 = 1X0 +−1X1

The language we are interested in is X0.

Substituting equation for X2 in X1, we get:

X1 = 1−1X1 + (11 +−1)X0

= (1−1)∗(11 +−1)X0 (by AR)

So, substituting back in X2

X2 = (1 +−1(1−1)∗(11 +−1))X0

Now substituting in X0, we get

X0 = 1(1−1)∗(11 +−1)X0 +−1(1 +−1(1−1)∗(11 +−1))X0 + ε

= (1(1−1)∗(11 +−1) +−1(1 +−1(1−1)∗(11 +−1)))X0 + ε

= (1(1−1)∗(11 +−1) +−1(1 +−1(1−1)∗(11 +−1)))∗ (by AR)

(c) We show ¬ P (the negation of the pumping property).

Suppose k ≥ 0.

Consider x = ε, y = 1k and z = (−1)k. Then xyz = 1k(−1)k ∈ L and clearly
|y| ≥ k.

Suppose y = uvw where |v| ≥ 1.

Then uv0w = uw = 1m for some m < k. Whence xyv0wz = 1m(−1)k 6∈ L since
m < k.

Thus the pumping property fails for i = 0.

(d) We use a single control state q and stack alphabet Γ = {⊥, 1, −1}. The transi-
tions from q to q are:

1, ⊥ : 1⊥ −1, ⊥ : −1⊥
1, 1 : 11 −1, −1 : −1−1

1, −1 : ε −1, 1 : ε

ε, ⊥ : ε

(notation a, x : α where a ∈ Σ ∪ {ε} is read symbol, x ∈ Γ is symbol popped
off stack, and α ∈ Γ∗ is sequence pushed right-to-left onto stack).

7. (a) The CYK chart is

cows , goats and sheep
cows I,AL,CL CL CAL,L

, I,AL,CL
goats I,AL,CL AL,CAL,L

and I,AL,CL
sheep I,AL,CL

iii

(b) The grammar is ambiguous: goats and sheep can be parsed as either an AL or a
CAL. (This example already features in the CYK chart above.)

(c) The following is a typical LL(1) grammar of the required kind (minor variations
are possible).

L → I Rest
Rest → ε | and I ATail | , I CTail and I
ATail → ε | and I ATail
CTail → ε | , I CTail

The requirement to use CTail is intended to ensure that at least one Follow set
is non-trivial; it should also constrain the form of possible solutions so as to ease
marking.

(d) For the above LL(1) grammar, the First and Follow sets are

First(L) = { I } Follow(L) = { $ }
First(Rest) = { ε, and, , } Follow(Rest) = { $ }

First(ATail) = { ε, and } Follow(ATail) = { $ }
First(CTail) = { ε, , } Follow(CTail) = { and }

(e) For the above grammar, the parse table is

I and , $
L I Rest

Rest and I ATail , I CTail and I ε
ATail and I ATail ε
CTail ε , I ATail

(f) In general, LL(1) grammars aren’t appropriate for NLP. NL parsing typically
involves non-trivial lookahead, in which case LL(1) can’t be used. But even when
an NL grammar can be made LL(1), doing so may eradicate genuine ambiguities
in an artificial way: a single interpretation will be selected, but the user can’t
be expected to know which one, and the ambiguity won’t be flagged up.

8. (a) The semantics is as follows (only trivial variations are possible):

S → There is a NP { ∃ x. NP.Sem(x) }
NP → N { N.Sem}
NP → ANP { ANP.Sem}
NP → ANP that VP { λx.ANP.Sem(x) ∧ VP.Sem(x)}

ANP → AP N { λx.N.Sem(x) ∧ AP.Sem(x) }
AP → A { A.Sem}
AP → A1 or A2 { λx.A1.Sem(x) ∨ A2.Sem(x) }
VP → touches every NP { λx.∀ y. NP.Sem(y) ⇒ touches(x,y) }
VP → touches some NP { λx.∃ y. NP.Sem(y) ∧ touches(x,y) }
N → sphere { λx.sphere(x) }, etc.
A → red { λx.red(x) }, etc.

(b) The logical formula is

∃x. cube(x) ∧ red(x) ∧(∀y. (sphere(y) ∧ (blue(y) ∨ green(y))) ⇒ touches(x,y))

(c) The last two parts of the question are harder, but similar to things they have
seen. They are deliberately allocated only a modest number of marks.

VP → touches QNP { λx. QNP.Sem(λy.touches(x,y)) }
QNP → every NP { λP.∀ y.(NP.Sem(y) ⇒ P(y))
QNP → some NP { λP.∃ y.(NP.Sem(y) ∧ P(y))

iv

(d) The raw lambda expression given by the semantics above is:

λx. (λP.∃y. (λx.cube(x))(y) ∧ P(y)) (λy.touches(x,y))

This reduces via four β-reduction steps to:

λx.∃y. cube(y) ∧ touches(x,y)

v

