
UNIVERSITY OF EDINBURGH

COLLEGE OF SCIENCE AND ENGINEERING

SCHOOL OF INFORMATICS

INFORMATICS 2A: PROCESSING FORMAL AND NATURAL
LANGUAGES

Wednesday 15 th December 2010

14:30 to 16:30

Convener: J Bradfield
External Examiner: A Preece

INSTRUCTIONS TO CANDIDATES

1. Answer Parts A and B. The multiple choice questions in Part A are worth
50% in total and are each worth the same amount. Mark one answer only for
each question — multiple answers will score 0. Marks will not be deducted
for incorrect answers. Part B contains THREE questions. Answer any
TWO. Each is worth 25%.

2. Use the special mark sheet for Part A. Use a separate script book for each
of the two questions from Part B that you answer.

PART A
ANSWER ALL QUESTIONS IN PART A. Use the special mark sheet.

Notation: In this section of the paper we use the following notation:

• #c(x) stands for the number of c symbols in the string x.

• xR is the reverse of the string x, so if x = a1 . . . an, xR = an . . . a1

1. Someone asserts that the language L = {ww | w ∈ {a, b}∗} is recognisable by a
finite state machine with k states. You are in the process of demonstrating this
is false using the pumping lemma. What would be a good choice of string to
consider in using the pumping lemma to prove the assertion is false?

(a) aaaaaa

(b) aaabbbbaabb

(c) a2kb

(d) akbakb

(e) None of the above.

2. Which of the following is the dependency set for a string x = a1 . . . a2n of length
2n in the language L = {ww | w ∈ {a, b}∗}?

(a) {(i, 2n− i + 1) | 1 ≤ i ≤ n}
(b) {(i, n− i + 1) | 1 ≤ i ≤ n}
(c) {(i, n + i) | 1 ≤ i ≤ n}
(d) ∅
(e) None of the above.

Page 1 of 13

3. What is the language recognised by the following FSA?

// ?>=<89:;765401230

a

 b
++ ?>=<89:;1

a

b

��?>=<89:;2

a

TT

b

ZZ

(a) {x ∈ {a, b}∗ | #a(x) and #b(x) are both even}
(b) {x ∈ {a, b}∗ | #a(x) is even}
(c) {x ∈ {a, b}∗ | #a(x) is divisible by three}
(d) {x ∈ {a, b}∗ | #b(x) is divisible by three}
(e) none of the above

4. Which of the following strings is a member of the language described by the
regular expression (a∗ba∗ba∗ba∗)∗

(a) bbbb

(b) bbaaabb

(c) bbaaabbbabb

(d) bbabbbab

(e) None of the above.

5. Someone has asserted that the following two regular expressions describe the
same language: R1 = ((ab∗a) + (ba∗b))∗ and R2 = ((ab∗a) + b∗)∗. Which of the
following strings is contained in one of the languages but not in the other?

(a) ababab

(b) bbbbbb

(c) abba

(d) bbabba

(e) None of the above.

Page 2 of 13

6. Which of the following context-free grammar productions describes the language
which is a subset of {a}∗ in which all strings contain an odd number of a symbols
ambiguously. In all cases, the start symbol is S and the alphabet is {a}.

(a) S → a | aSa

(b) S → aaS | a
(c) S → Saa | a
(d) S → aA | Aa | a A → aS

(e) None of the above.

7. Which of the following descriptions best fits the language L = {anbmcndm |
n, m ≥ 0}?

(a) L is a regular language

(b) L is a context-free language that is not regular

(c) L is a context-sensitive language that is not context-free

(d) L is not a context-sensitive language

(e) None of the above.

8. Consider the following context-free language: L1 = {ambncn | n, m ≥ 0}. Which
of the following choices of language L2 is context-free and ensures that L1 ∩ L2

is not a context-free language.

(a) L2 = {akb2kcm | k ≥ 0 and m ≥ 0}
(b) L2 = {(abc)k | k ≥ 0}
(c) L2 = {akbmck | k ≥ 0 and m ≥ 0}
(d) L2 = {akb2kc2k | k ≥ 0}
(e) None of the above.

Page 3 of 13

9. Consider the following context-free grammar:

G = ({S, A,B}, {a, b, c,a}, {S → A a A → cA | BAa | b B → b | ε}, S)

Which of the following sets is First1(A)?

(a) {a}
(b) {a, b}
(c) {a, b, ε}
(d) {a, b, c, ε}
(e) None of the above

10. What is the language recognised by the following PDA P? The stack alphabet of
P is {A, B,⊥} where ⊥ is the initial stack symbol. The alphabet of P is {a, b,a}
where a is used to mark the end of the input. Here, #c(x) stands for the number
of c symbols in x.

// ?>=<89:;1

a,A;AA a,⊥;A⊥ b,A;λ

 a,A;A a,⊥;⊥ // ?>=<89:;765401232

(a) {x ∈ {a, b}∗ a| #a(w) ≥ #b(w) for every prefix w of x}
(b) {x ∈ {a, b}∗ a| #a(w) > #b(w) for every prefix w of x}
(c) {x ∈ {a, b}∗ a| #b(w) = 2#a(w) for every prefix w of x}
(d) {x ∈ {a, b}∗ a| #b(w) ≥ #a(w) for every prefix w of x}
(e) none of the above

11. Which one of the following statements about word classes in natural languages
is false?

(a) As a language develops, open classes acquire new words more frequently
than closed classes do.

(b) Among languages worldwide, there is more variation in the inventory of open
classes than of closed ones.

(c) Prepositions in English form a closed class.

(d) Closed classes often consist of relatively short words with some grammatical
function.

(e) An ambiguous word in English may belong to both an open and a closed
class.

Page 4 of 13

12. Which type of part-of-speech tagger suffers from the disadvantage that it needs
to be trained on a very large data set in order to work effectively?

(a) A default tagger

(b) A regular expression tagger

(c) A unigram tagger

(d) A bigram tagger

(e) A rule-based tagger

13. The following regular expression is proposed for the purpose of recognizing ad-
jectives in English:

^.*(a|e|i|o|u).*(ish|ic|al|ous|ble)$

Which of the following words is not admitted by this regular expression?

(a) uffish

(b) hymnic

(c) ancestral

(d) pious

(e) table

14. Which of the following sets of rules does not give rise to infinitely long derivations
with start symbol S?

(a) S → ε, S → aSb

(b) S → aT, T → bS

(c) S → aT, T → ba, U → bU

(d) S → S

(e) S → aU, T → bU, U → cT

15. Linear indexed grammars are intermediate in expressive power between

(a) regular and LL(1) grammars

(b) LL(1) and context free grammars

(c) context free and context sensitive grammars

(d) context sensitive and general (Type 0) grammars

(e) none of the above

Page 5 of 13

16. Which of the following statements about parsing algorithms is incorrect?

(a) Recursive descent parsing is top-down and depth-first.

(b) LL(1) parsing can be applied to any context-free grammar in Chomsky nor-
mal form.

(c) The CYK algorithm is a bottom-up chart parsing algorithm.

(d) The Earley algorithm is a bottom-up chart parsing algorithm.

(e) The Earley algorithm uses top-down prediction to avoid building unneces-
sary structure.

17. Consider the following probabilistic context-free grammar:

S → N V P (1.0)
V P → IV (0.2)
V P → TV N (0.8)

N → mice (0.5)
N → owls (0.3)
N → badgers (0.2)

IV → sleep (0.7)
IV → fly (0.3)
TV → like (0.7)
TV → hunt (0.3)

Which of the following sentences is assigned the highest probability by this gram-
mar?

(a) badgers sleep

(b) owls fly

(c) mice fly

(d) owls hunt mice

(e) owls like badgers

18. What is the correct meaning representation for If everyone takes part, everyone
will be happy?

(a) (∃x.TakesPart(x)) ⇒ (∀x.WillBeHappy(x))

(b) (∃x.TakesPart(x)) ⇒ (∃x.WillBeHappy(x))

(c) (∃x.TakesPart(x)) ⇒ (∃x.WillBeHappy(x))

(d) ∀x.(TakesPart(x) ⇒ WillBeHappy(x))

(e) (∀x.TakesPart(x)) ⇒ (∀x.WillBeHappy(x))

Page 6 of 13

19. Suppose that the predicate L(x, y) means “x loves y”. Which of the following is
not a possible representation of the meaning of Everybody loves somebody?

(a) ∀x. ∃y. L(x, y)

(b) (λP.∀x. ∃y. P (x, y))(λxλy. L(x, y))

(c) (λP.∀x. ∃y. P (x, y))(λxλy. L(y, x))

(d) (λP.∀y. ∃x. P (y, x))(λxλy. L(x, y))

(e) (λP.∀x. ∃y. P (y, x))(λxλy. L(y, x))

20. Which of the following statements about formal languages is false?

(a) Every recursive language is recursively enumerable.

(b) The complement of a recursive language is recursive.

(c) The complement of a recursively enumerable language is recursively enu-
merable.

(d) The union of two recursive languages is recursive.

(e) The union of two recursively enumerable languages is recursively enumer-
able.

Page 7 of 13

PART B
ANSWER TWO QUESTIONS FROM PART B. Use a separate script
book for each question.

1. In this question you are asked to model a simple control system that is intended
to ignite a heating system safely.

(a) The ignition system can do the folllowing actions:

• i – attempt to ignite the heater

• d – detect that the heater has ignited correctly

• f – fail to ignite the heater

• r – reset after failure - the system awaits a reset before attempting to
ignite again

• s – switch off after the correct temperature is achieved

The machine M1 that models the ignition control system is:

// ?>=<89:;765401231

r

 i
++ ?>=<89:;2

f

yy

d
++ ?>=<89:;3

s

��

?>=<89:;4

r

XX

The designer of the system wants to check it is correct and thinks that having
a regular expression for the language L(M1) might be helpful. By writing
down an equation for each state and solving them using the technique used
in Kleene’s theorem, find a regular expression for the language recognised
by M1. [6 marks]

(b) After some experience in the field the designer decides that if the system
fails to ignite twice then it should stop working to await maintenance. The
machine that allows any action when one or fewer fails have been observed
is M2:

// ?>=<89:;765401231

i,d,r,s

�� f
++ ?>=<89:;765401232

i,d,r,s

��

Combine M2 with the original model, M1, of the ignition system using the
intersection operation for Finite State Machines to construct a new version
of the machine that stops working once it has seen two ignition failures. [5 marks]

Page 8 of 13

(c) After further experience in the field it becomes evident that the system
sometimes does not await a reset. The designer’s model M3 of this behaviour
is the following:

// ?>=<89:;765401231

r

 i
++ ?>=<89:;2

f

kk

f

yy

d
++ ?>=<89:;3

s

��

?>=<89:;4

r

XX

Unfortunately M3 is a nondeterministic finite automaton. Use the standard
construction to find an equivalent deterministic finite automaton. [6 marks]

(d) The designer is now worried that perhaps the control system has other fail-
ures. To help monitor the behaviour of the system you are required to build
a machine that checks to see that for every attempted ignition the system
either fails or detects a correct ignition. The designer asks you to build a
machine that recognizes:

L4 = {w ∈ {i, d, s, f, r}∗ | #i(w) = #d(w) + #f (w)}

The designer claims to have a finite state machine M5 such that L(M5) = L4

and M5 has k states. Do you disagree with the designer’s claim? If you do
disagree, provide notes on how you would go about convincing the designer
the claim is false. If you agree with the designer provide a convincing argu-
ment the machine can be constructed. [4 marks]

(e) The designer decides to build a monitor machine M6 that will recognise L4.
Can you construct a machine M6 such that:

L(M6) = L4

[4 marks]

Page 9 of 13

2. Consider the following grammar for noun phrases, in which the start symbol is
NP, and the lowercase English words are terminals:

NP → Det Nom
Nom → N | AP Nom

AP → Adj | AdvD Adj
N → book | orange

Adj → heavy | orange
Det → a

AdvD → very

Here the symbols N, Adj, Det, AdvD represent various parts of speech: respec-
tively, nouns, adjectives, determiners and adverbs of degree. Note in particular
the part-of-speech ambiguity of ‘orange’.

In this question, we shall apply several parsing algorithms to the noun phrase:

a very heavy orange book

(a) Draw up and fill out a complete CYK parsing chart for this phrase as a 5x5
grid. Take care to include all possible entries in the chart, not just those
that contribute to some overall parse of the phrase. (You need not include
pointers or other information to show how each non-terminal is broken into
its immediate sub-constituents.)

How many possible parse trees are there for the whole phrase? Draw them
all. [8 marks]

(b) Recall from the lectures that a bottom-up active parsing strategy for a phrase
of length n works as follows (we summarize it here in terms of building up
a graph whose arcs are labelled with dotted rules).

i. Starting from a row of n+1 nodes, use the bottom-up initialization rule
to add an arc for every word in the phrase.

ii. Apply the bottom-up predict rule wherever possible.

iii. Apply the fundamental rule of active chart parsers wherever possible.

iv. Repeat steps 2 and 3 until no new edges are added.

Construct the labelled graph obtained by applying this process to the phrase
‘a very heavy orange book’ with the above grammar. This time, you should
only include arcs and labelled that contribute to some overall parse, drawing
on your experience from part (a). To reduce clutter, you should omit all
self-loop arcs. You may also label the same arc with as many dotted rules
as necessary. [8 marks]

Page 10 of 13

(c) Suppose now we delete the rule ‘N→ orange’ from the grammar, thus resolv-
ing the POS-ambiguity in favour of Adj. Somewhat unusually for a Natural
Language example, the remaining rules then constitute an LL(1) grammar.
Draw up the LL(1) parse table for this grammar. (Formally, this can be done
by computing First sets, but you may find it easier simply to fill out the
table by inspection of the grammar. Note that Follow sets are not relevant
since no non-terminal can expand to the empty string.) [6 marks]

(d) Now suppose we reinstate the rule ‘N→ orange’, and again attempt to parse
the phrase ’a very heavy orange book’ using LL(1) parsing. Carefully explain
what exactly goes wrong, and at what stage in the process it does so. [3 marks]

Page 11 of 13

3. In this question we shall consider both the syntax and semantics of a language
for making statements about particular named people. Our starting point is the
language of simple sentences (SS) as defined by the following grammar. Note
that the verbs in question are intransitive, transitive or ditransitive, according
to whether they take 0, 1 or 2 arguments (not counting their subject). We also
include a class of common nouns (CN) for later use.

SS → Name VP
VP → IV | TV Name | DV Name to Name

Name → John | Mary | Peter | Susan
IV → slept | walked

TV → met | saw
DV → introduced | sent
CN → child | man | woman

(a) For each of the three verb types, write down an example of a sentence
generated by the above grammar containing a verb of that type. [3 marks]

(b) In English, a common noun may be modified by a relative clause. The
following are examples of noun phrases involving relative clauses (the relative
clause is underlined in each case).

(a) a man who slept
(b) a woman who saw Peter
(c) a man who introduced Mary to Susan
(d) a woman Susan met
(e) a child Mary sent John to

The relative clauses here are of three kinds. In (a)-(c), it is the subject of
the clause that has been relativized (a man slept, etc.). In (d), the direct
object has been relativized (Susan met a woman). In (e), the indirect object
has been relativized (Mary sent John to a child).

Write a set of context-free rules which, in combination with those given
above, yield a grammar for a phrase type NP of noun phrases. Here, a
noun phrase should consist of a common noun preceded by the determiner
‘a’ and optionally followed by a single relative clause. Your rules should
generate all the examples listed above, and others with the same structure.
It should not generate phrases that are obviously ungrammatical in English.
To cover the above phrases, you will only need a single rule for each of the
three kinds of relative clause. (Note: your grammar is not required to
generate the phrase ‘the man Mary sent to Susan’.) [6 marks]

We may now obtain a grammar for complex sentences (CS) by adding the single
rule:

Page 12 of 13

CS → Name is NP

We next build up a compositional semantics for our language using predicate logic
and lambda expressions. We attach a semantic valuation function to the grammar
rules for simple sentences as follows (the clauses for the remaining terminals are
similar). Four of the semantic clauses in this definition have been intentionally
left blank.

Name → John { john }
IV → slept { λx. slept(x) }

TV → saw
DV → sent
VP → IV { IV.Sem }
VP → TV Name
VP → DV Name1 to Name2

SS → Name VP { VP.Sem (Name.Sem) }

(c) Complete the definition by attaching a suitable semantics to the remaining
four rules. You may assume the logic contains predicates saw(x,y) and
sent(x,y,z), meaning respectively ‘x saw y’ and ‘x sent y to z’. [4 marks]

(d) For the sentence with a ditransitive verb that you gave in part (a), write
down the raw lambda expression assigned to it by the above definition. Then
show how this lambda expression can be reduced, one β-step at a time, to
a much simpler formula. [4 marks]

(e) Your final task is to extend the above semantics to noun phrases as defined
by your rules. The semantics of a noun phrase (NP) should be a unary
predicate — informally, one which is true of exactly those individuals who
fit the description given by the phrase. Write out the rules you gave in part
(b), attaching suitable semantic valuations in the style above. You may
assume the logic contains unary predicates such as man(x). [8 marks]

It is possible to verify your answer to part (e) in the following way (though you
are not required to do so for full credit). The semantics for complex sentences
may be completed as follows:

CS → Name is NP { NP.Sem (Name.Sem) }

You may now compute the semantics for a sentence such as ‘John is a man
whom Susan met’ and check that it β-reduces to the formula man(john) ∧
met(susan,john).

Page 13 of 13

