
Module Title: Informatics 2A
Exam Diet (Dec/April/Aug): August 2014
Brief notes on answers:

PART A

1. (a) Regular languages; context-free languages; context-sensitive languages; recur-
sively enumerable languages.

[4 marks: 1 mark each]

(b) Languages recognised by DFAs; languages recognised by NFAs; languages de-
fined by regular expressions.

[3 marks: 1 mark each]

(c) An NFA can be converted to a DFA using the subset construction.
A DFA can be converted to a regular expression by solving a set of simultaneous
equations (using Kleene algebra).
A regular expression is directly translatable to an NFA (e.g., using ε transitions
then eliminating them).

[3 marks: 1 mark each. Enough to give the key idea; i.e., non-bracketed part.]

2. (a) Definitions of lexical classes:

IF : [iI]f | IF

THEN : [tT]hen | THEN

ELSE : [eE]lse | ELSE

NUM : [0-9]+

OP : == | <= | < | > | >= | <>

VAR : ([a-z]|[A-Z])([a-z]|[A-Z]|[0-9])*

[8 marks: deduct 1 per error]

[There plenty of room for interpretation and variation here, so good solutions
may look very different from the above. However, marks may be deducted for
implausible choices, even when consistent with the example in the question.]

(b) The three keywords IF, THEN and ELSE need to have higher priority than VAR.

[2 marks: award 1 if right idea but imperfection in presentation]

3. (a) • The root of the tree is labelled with S. [1 mark]

• Each leaf is labelled with either a terminal or ε. [2 marks]

• Each internal node is labelled with a nonterminal X for which there is a
production X → α in P such that either: α 6= ε and the node’s children are
labelled with the symbols in α in turn; or α = ε and the node has a unique
child labelled with ε. [2 marks]

[5 marks total]

(b) There is some phrase x that has two distinct parse trees. [1 mark]

(c) Grammar (Σ = {a}):
S → a | a S | S a

i

The phrase aa has two distinct parse trees.

S

S

a

a

S

a S

a

[4 marks: 1 for an ambiguous grammar, 1 for identifying ambiguous phrase, 2
marks for giving 2 distinct trees]

4. (a) The tagging obtained using the bigram tables is

let/V her/OP duck/V fly/V

(which is not the most natural tagging at all).

[1 mark per correct tag; 1 mark overall for explanation.]

(b) Bookwork. In an n-gram tagger, we look for the most frequent tag for each word
given the tags already assigned to the preceding n − 1 words. For n = 4, this
can lead to more accurate results than bigram tagging, since more information
about the context of the word comes into play. However, this supposes we have
4-dimensional frequency tables for each word type, and unless our corpus is very
large indeed, these matrices may be too sparse to be really useful. [1 mark for
concept of n-gram tagger, 1 mark for advantage, 1 mark for disadvantage. Other
reasonable points accepted.]

(c) Again bookwork. The Viterbi algorithm finds the tag sequence with highest
overall probability, in contrast to bigram tagging, where the most probable local
choice at one stage might be paid for by a very improbable choice at a later
stage. For example, in the above tagging, the ‘improbable’ transition V– Vmight
result in a low probability for the tag sequence as a whole, whereas the ‘intended’
tagging V PP N Vmight well emerge as the most probable. [1 mark for ‘most
probable overall’; 1 mark for some sensible reference to the example.]

5. (a) There are two parse trees. ‘Tree 1’ (corresponding to the natural interpretation)
is

(S (NP (A meterological)(N office))(V forecasts)(NP (A calm)(N seas)))

This has probability 1.0× 0.3× 0.1× 0.2× 0.2× 0.3× 0.4× 0.4 = 576× 10−7.

‘Tree 2’ is

(S (NP (NP (A meterological)(N office))(N forecasts))(V calm)(NP (N seas)))

This has probability 1.0×0.2×0.3×0.1×0.2×0.4×0.2×0.5×0.4 = 192×10−7.

[1 mark for each parse tree; 1 mark for evidence of right method; 1 mark for
each correct probability.]

(b) The most probable choice is ‘calm’. To see this, first note that this is the only
choice yielding two parse trees. For ‘describe’, we obtain a tree with exactly the
same probability as Tree 2 above. For ‘stormy’, we obtain a tree more probable
than Tree 1 by a factor of 0.5/0.4, i.e. 720× 10−7, but this is still less than the
sum of the probabilities of Trees 1 and 2 (768× 10−7).

[1 mark for the right answer, 4 marks for the explanation. Partial marks available
for a wrong answer if some valid points are made.]

ii

PART B

6. [A similar question to this was scrutinised last year but wasn’t used because of the
ITO burglary]

(a) The DFA is below. (Corrections: qd is the start state. qu is also acceping.)

[4 marks: deduct 1 per mistake]

(b) The equations are:

Xd = dXd + cXu + uXg + ε

Xu = uXu + cXd + dXg + ε

Xg = dXg + uXg + cXg

The language we are interested in is Xd.

First derive

Xg = ∅

(This can be done using Arden’s rule, but enough to spot the equality.)

Thus the equations simplify to

Xd = dXd + cXu + ε

Xu = uXu + cXd + ε

By Arden’ rule:

Xu = u∗(cXd + ε)

So

Xd = dXd + cu∗(cXd + ε) + ε

Xu = (d+ cu∗c)Xd + cu∗ + ε

Again by Arden’ rule:

Xu = (d+ cu∗c)∗(cu∗ + ε)

iii

(c) Not regular.

[1 mark]

We show ¬ P (the negation of the pumping property).

Suppose k ≥ 0.

Consider x = ε, y = dk and z = cuk. Then xyz = dkcuk ∈ L and clearly |y| ≥ k.

Suppose y = uvw where |v| ≥ 1.

Then uv0w = uw = dm for some m < k. Whence xyv0wz = dmcuk 6∈ L since
m < k.

Thus the pumping property fails for i = 0.

[6 marks: in proportion to completeness of argument]

(d) S → d c u | d S u .

[3 marks: deduct 1 per mistake]

(e) The language is context sensitive (but not context free).

[1 mark: for unbracketed part]

7. (a) Parse table:

add take-away () int $
Exp Exp1 Ops Exp1 Ops
Ops addExp1 Ops take-awayExp1 Ops ε
Exp1 (Exp) int

[6 marks: deduct 1 per mistake]

(b) Algorithm execution:

action unread input stack
2 add 1 $ Exp

Exp → Exp1 Ops 2 add 1 $ Exp1 Ops
Exp1 → int 2 add 1 $ int Ops
match int add 1 $ Ops
Ops → add Exp1 Ops add 1 $ add Exp1 Ops
match add 1 $ Exp1 Ops
Exp1 → int 1 $ int Ops
match int $ Ops
Ops → ε $ ε

[6 marks: deduct 1 per mistake]

(c) Annotated tree:

iv

Exp {(λz. (λy. (λx.x) (y + 1))(z − 2))(3)}

Exp1 {3}

3

Ops {λz. (λy. (λx.x) (y + 1))(z − 2)}

take-away Exp1 {2}

2

Ops {λy. (λx.x) (y + 1)}

add Exp1 {1}

1

Ops {λx.x}

ε

[6 marks: 1 for sufficient correct annotation at bottom; 5 marks for the 3 main
annotations, deducting 1 mark per mistake. Penalise by just 1 mark for incorrect
tree structure.]

(d) β-reductions:

(λz. (λy. (λx.x) (y + 1))(z − 2))(3)

→ (λy. (λx.x) (y + 1))(3− 2)

→ (λx.x) ((3− 2) + 1)

→ (3− 2) + 1

[4 marks: 1 for having roughly right idea about β-reduction, plus 1 mark per
correct step]

[Reduction of the arithmetic operations, e.g., to produce correct result of 2, is
allowable. This will neither be rewarded or penalised. However, incorrect such
reductions will be penalised.]

(e) Just two productions need a change of semantics:

Ops → add Exp1 Ops { λx.x + Ops.Sem (Exp1.Sem) }
Ops → take-away Exp1 Ops { λx.x − Ops.Sem (Exp1.Sem) }

[3 marks: 1 for realising that just these 2 productions need the alteration; 2 for
giving the correct definitions]

8. The parameterized grammar is:

v

(a)

S → NP[n] VP[n,a,x] , TagQ[n,a,x]
NP[n] → The N[n]

VP[n,a,x] → Aux[n,a] NegOpt1[x] V[a]
TagQ[n,a,x] → Aux[n,a] NegOpt2[x] Pron[n] ?

NegOpt1[pos] → ε
NegOpt1[neg] → -n’t
NegOpt2[pos] → -n’t
NegOpt2[neg] → ε

N[sing] → eagle | rocket
N[plur] → eagles | rockets

Aux[sing,have] → has
Aux[plur,have] → have

Aux[n,had] → had, etc.
V[have/had] → landed | flown
V[does/did] → land | fly

Pron[sing] → it
Pron[plur] → they

Minor variations are possible. E.g. I would accept a solution that also included
NegOpt2[pos] →ε.
[11 marks. Quite challenging, so be fairly generous where there is evidence of
understanding.]

(b) The CYK parse chart (using a few abbreviations) is:

The rocket did -n’t fly , did it ?
The NP[sing] S
rocket N[sing]
did Aux[s/p,did] VP[s/p,did,neg]
-n’t NegOpt1[neg],

NegOpt2[pos],
fly V[does/did]
,
did Aux[s/p,did] TagQ[s,did,neg]
it Pron[s]
?

(The use of CYK-style charts for non-CNF grammars is slightly non-standard,
but they will have seen it in lectures.)

[About 2 marks per 3 correct entries; be fairly generous.]

(c) Modify the above grammar by removing TagQfrom the first production, and use
this to parse the user’s input. The resulting parse tree will reveal the appropriate
values for n,a,x. Using these values, now expand TagQ[n,a,x] in the unique way
possible using the parameterized rules; the result will be the appropriate tag
question.

[1 mark for identifying need for a parsing and generation phase. 2 marks for
remainder of explanation.]

vi

