Module Title: Informatics 2A Exam Diet (Dec/April/Aug): August 2013 2012–13 Brief notes on answers:

PART A

1. (a) Equations:

$$X_1 = aX_3 + bX_2 + \epsilon$$
$$X_2 = aX_1 + bX_2$$
$$X_3 = aX_3 + bX_1$$

(b) Applying Arden's rule to X_2 and X_3 we get respectively

$$X_2 = b^* a X_1$$
$$X_3 = a^* b X_1$$

Substituting in to equation for X_1 , we get:

$$X_1 = aa^*bX_1 + bb^*aX_1 + \epsilon$$

= $(aa^*b + bb^*a)X_1 + \epsilon$
= $(aa^*b + bb^*a)^*$

with the last equation again by Arden's rule. Thus the regular expression for the language is

$$(aa^*b + bb^*a)^*$$

2. (a)

transition	$\operatorname{control}$	unread	stack
	state	input	
	q1	aab	\perp
$q1 \xrightarrow{a, \perp : \perp \perp} q1$	q1	ab	$\perp \perp$
$q1 \xrightarrow{a, \perp : \perp \perp} q1$	q1	b	$\perp \perp \perp$
$q1 \xrightarrow{\epsilon, \perp : \epsilon} q2$	q2	b	$\perp \perp$
$q2 \xrightarrow{b, \perp : \epsilon} q2$	q2	ϵ	\perp
$q2 \xrightarrow{\epsilon, \perp : \epsilon} q2$	q2	ϵ	ϵ

(b) The language is:

 $\{a^n b^m \mid n \ge m \ge 0\}$

 3. (a) Structurally ambiguous: there is a phrase that has more than one parse tree. An example: Var ∨ Var.

(b) An LL(1) grammar:

 $\begin{array}{rrrr} {\sf Lit} & \to & {\sf Var} & | & \neg & {\sf Var} \\ {\sf Clause} & \to & {\sf Lit} & {\sf ClauseTail} \\ {\sf ClauseTail} & \to & \epsilon & | & \lor & {\sf Clause} \end{array}$

4. The Earley parsing chart is:

S	\rightarrow	• NP V	$^{[0,0]}$	Р
NP	\rightarrow	• N	[0,0]	Р
NP	\rightarrow	• N N	$^{[0,0]}$	Р
NP	\rightarrow	Ν •	[0,1]	\mathbf{S}
NP	\rightarrow	N • N	$^{[0,1]}$	\mathbf{S}
S	\rightarrow	$NP \bullet V$	$^{[0,1]}$	С
NP	\rightarrow	ΝΝ•	[0,2]	\mathbf{S}
S	\rightarrow	$NP \bullet V$	[0,2]	С
S	\rightarrow	NP V •	[0,3]	\mathbf{S}

(Or they may write bread, price, rises in place of N,V to the left of the \bullet .)

- 5. (a) The raw lambda expression arising from the definition is $(\lambda x. (\lambda z. child(z))(x) \land (\lambda y. (\lambda uv. likes(u,v)(Anna,y)(x)))$ (Bill)
 - (b) This reduces via four β -reductions (which can be done in various orders) to $child(Bill) \wedge likes(Anna,Bill)$

PART B

6. (a) Not regular. We show $\neg P$ (the negation of the pumping property). Suppose $k \ge 0$. Consider $x = \epsilon$, $y = \langle a \rangle^k$ and $z = \langle /a \rangle^k$. Then $xyz = \langle a \rangle^k \langle /a \rangle^k \in L$ and clearly $|y| \ge k$. Suppose y = uvw where $|v| \ge 1$. Then $uv^0w = uw = \langle a \rangle^m$ for some m < k. Whence $xyv^0wz = \langle a \rangle^m \langle /a \rangle^k \notin L$ since m < k. Thus the pumping property fails for i = 0.

(b)

$$First(Doc) = \{\epsilon, \text{text}, \langle a \rangle, \langle b \rangle \}$$

Follow(Doc) = {\$, , }

(c)

	text	<a>				\$
Doc	text	<a>Doc Doc	Doc Doc	ϵ	ϵ	ϵ

- (ii). in input does not match on stack.
 Error message: " occurs where expected."
- (iii). Stack empties before end of input reached.Error message: "completed document before occurrence of ."
- 7. (a) Bookwork. The probability assigned to a rule $X \to \alpha$ is the number of applications of this rule in the corpus divided by the total number of appearances of the non-terminal X in the corpus.
 - (b) The grammar with probabilities added is:
 - $S \rightarrow Name VP (1.0)$
 - $VP \rightarrow V NP (0.6) \mid V NP PP (0.4)$
 - $\mathsf{NP} \rightarrow \mathsf{the} \mathsf{N} (0.875) \mid \mathsf{the} \mathsf{N} \mathsf{PP} (0.125)$
 - $PP \rightarrow \text{with } NP (1.0)$

(Note that VP occurs 5 times in the corpus, and NP occurs 8 times.)

(c) There are two parse trees:

(S (Name John)(VP (V saw)(NP the (N man)(PP with (NP the (N telescope)))))) (S (Name John)(VP (V saw)(NP the (N man))(PP with (NP the (N telescope))))) The first of these (where the man has the telescope) has probability $1.0 \ge 0.6 \ge 0.125 \ge 1.0 \ge 0.065625$. The second (where John has the telescope) has probability $1.0 \ge 0.4 \ge 0.875 \ge 1.0 \ge 0.875 = 0.28125$. (d) The lexicalized rules and head selection rules have probabilities as follows:

VP[saw]	\rightarrow	saw NP (0.667) saw NP PP (0.333)
$NP[\operatorname{man}]$	\rightarrow	the man (0.5) the man PP (0.5)
NP[telescope]	\rightarrow	the telescope (1.0) the telescope PP (0.0)
VP	\rightarrow	VP[saw] (0.6)
NP	\rightarrow	NP[man] (0.25)
NP	\rightarrow	NP[telescope] (0.125)

(e) The first of the above parse trees now has probability $1.0 \ge 0.2 \ge 0.4 \ge 0.667 \ge 0.25 \ge 0.5 \ge 0.125 \ge 1.0 = 0.0008333$. The second has probability $1.0 \ge 0.2 \ge 0.4 \ge 0.333 \ge 0.25 \ge 0.5 \ge 0.125 \ge 1.0 = 0.0004167$.

- 8. (a) This is an example of a noncontracting grammar. This is because the right side of every production is at least as long as the left side. Since noncontracting grammars are equivalent in power to context-sensitive grammars, we can say that the language is (at worst) context sensitive.
 - (b) (i). Underlining the sequence to be expanded on the next line:

(ii).

From this the desired phrase is obtained by two G expansions. (c) L_2 is context free. A grammar for it:

(d) A possible grammar: