
UNIVERSITY OF EDINBURGH

COLLEGE OF SCIENCE AND ENGINEERING

SCHOOL OF INFORMATICS

INFORMATICS 2A: PROCESSING FORMAL AND NATURAL
LANGUAGES

August 19, 2010

14:30 to 16:30

Convener: J Bradfield
External Examiner: A Preece

INSTRUCTIONS TO CANDIDATES

1. Candidates in the third or later year of study for the degrees of MA(General),
BA(Relig Stud), BD, BCom, BSc(Social Science), BSc (Science) and BEng
should put a tick (

√
) in the box on the front cover of the script book.

2. Answer Parts A and B. The short answer questions in Part A are worth 50% in
total and are each worth the same amount. Part B contains THREE questions.
Answer any TWO. Each is worth 25%. If you attempt all three questions, cross
out one answer. If you do not, you will gain credit for two of the questions you
have answered. The choice of questions gaining credit is at the discretion of
the examination board.

3. Use a separate script book for part A and for each of the TWO questions from
Part B. that you answer.

Write as legibly as possible.
CALCULATORS ARE NOT PERMITTED.

Part A
ANSWER ALL QUESTIONS IN PART A. Use a separate script book for your
answers to part A.

1. What is tokenization and what feature does a text need in order for it to be easily
tokenized?

2. In what way does a text with a high type/token ratio look different from a text
with a low type/token ratio?

3. Briefly describe two methods used by part-of-speech taggers to deal with unknown
words (ie, words that didn’t occur in the data used to train the tagger).

4. Given a context-free grammar, what is the relationship between a derivation of the
string according to the grammar and a tree diagram for the string according to the
same grammar?

5. Given a grammar rule

A → B C

briefly describe how it would be used in the reduce operation of a shift-reduce parser.

6. Name one type of ambiguity that increases the work load for a a chart parser. Briefly
explain what extra work needs to be done.

7. Name one type of ambiguity that does not increase the work load for a chart parser.
Briefly explain why the work load is not increased.

8. Simplify the following expression using both alpha-conversion and beta-reduction:

λ y . λ x . love(x,y)(x)(john)

9. Briefly describe one property of linear-indexed grammars that is not shared by
context-free grammars?

10. What does it mean for a grammar to be weakly adequate for a Natural Language?

11. A fellow student tells you he is proposing to construct a recursive descent parser for
a grammar with the following rules:

A → BAa | c B → d | bB

Do you think this is a good proposal? Justify your answer.

12. Given two deterministic FSMs M1 = (Σ1, S1, s
1
0, δ1) and M2 = (Σ2, S2, s

2
0, δ2). If

we follow the standard construction for deriving the machine, M3, that accepts the
intersection of the languages accepted by M1and M2 is the machine M3 deterministic?

Page 1 of 6

13. Suppose you are given a DFA M that has n states and the alphabet of M is Σ. You
have been asked to find the machine M̄ that accepts the complement of the language
recognised by M . So, M̄ accepts any member of Σ∗ that is not accepted by M . How
many states does M̄ have? Justify your answer.

14. Consider a grammar with the following rules (the top symbol is S):

S → A | B
A → a | aAa

B → ε | aBa

Is the grammar LL(k) for any value of k? Justify your answer.

15. Consider the following Pushdown Automaton. The machine accepts with an empty
stack and the initial symbol on the stack is ⊥. In addition, we are using λ for the
empty string of stack symbols and $ is the end of input symbol. What is the language
recognised by the machine? Justify your answer.

// ?>=<89:;1

a,A;AA a,⊥;⊥A $,⊥;λ

b,A;λ // ?>=<89:;2

b,A;λ $,⊥;λ ε,A,λ

16. Consider the following two context-free grammars, G1 and G2 with the following sets
of rules (S1 is the top symbol for G1 and S2 is the top symbol for G2. What is the
language L(G1) ∩ L(G2)? Is it context-free?

S1 → AC

A → ε | aAb

C → cC | ε

S2 → A

A → aAc | B

B → bB | ε

17. Consider following NFA:

// ?>=<89:;1

a

 a
++ ?>=<89:;765401232

Draw the finite automaton that accepts the complement of the language recognised
by this machine, relative to the alphabet {a}.

Page 2 of 6

18. Consider the CFG with the following rules. What is the set First1(A)? Justify your
answer.

A → aAb | CAd | ε

C → c | ε

19. Consider the following CFG. What is the set Follow1(B)? Justify your answer.

S → A$

A → Bc | BA | a

B → Bb | ε

20. Is the grammar with the following rules ambiguous? A is the top symbol in the
grammar. Justify your answer.

A → aAa | aAb | c

Page 3 of 6

Part B
ANSWER TWO QUESTIONS FROM PART B. Use a separate script book
for each question you answer in part B.

1. Consider the following NFA M . M is a model of a simple system that repeatededly
carries out the actions a followed by b, followed by c. Unfortunately, it also has a
bug that means sometimes the c is omitted.

// GFED@ABC?>=<89:;q1
a // GFED@ABCq2

b // GFED@ABCq3
c //

ε

ww GFED@ABCq4

ε

ii

(a) Use the techniques of Kleene’s theorem to convert this NFA to a Regular Ex-
pression. [6 marks]

(b) The technician trying to fix the bug does not understand non-deterministic ma-
chines. Use the standard construction to convert M to a deterministic machine.

[6 marks]

(c) The technician’s boss is fed up with how long it is taking to fix the bug. She
argues that the bug doesn’t happen very often and the system that uses this
machine as a component works fine with an occasional omitted c. She proposes
monitoring this by making a machine that accepts the language L = {x +
c(#a(x)−#c(x)) | x ∈ {abc, ab}∗}. Strings in L comprise a string x in {abc, ab}∗
followed by a plus symbol followed by n c symbols where n is how many more
as than cs appear in x. The technician thinks that this language could be
recognised by a Finite State Automaton.

i. Do you think the technician is right? [1 marks]

ii. Write reasonably detailed notes to support your view. [3 marks]
iii. Construct a machine that recognises the language L. [3 marks]

(d) What kind of grammar would you use to specify the language L? Provide a
brief outline of how you would expect the grammar to generate the language
and provide a grammar for the language. [6 marks]

Page 4 of 6

2. Given the grammar G1

G1 S → NP VP NPR → John (proper name)
NP → NPR N → spider (noun)
NP → N N → plants (noun)
NP → N N N → seeds (noun)
NP → PossNP NP TV → plants (transitive verb)
PossNP → NP Poss Poss → ’s (possessive)
VP → TV NP

and the sentence S1

S1: John’s spider plants seeds

where John’s is tokenized into the two tokens John and ’s :

(a) Draw the parse trees for all analyses of S1 according to grammar G1. [5 marks]

(b) Is the sentence S1 unambiguous with respect to grammar G1, or locally am-
biguous with respect to G1, or globally ambiguous with respect to G1? Briefly
explain your answer. [5 marks]

(c) Assuming that a recursive descent (RD) parser applies the rules of G1 in the
given order, describe how an RD parser would proceed to parse sentence S1, up
until the first point at which it would be forced to back up. [5 marks]

(d) Draw the chart that the CYK algorithm would construct for sentence S1 based
on grammar G1. [5 marks]

(e) For the initial step of the Earley (active chart parsing) algorithm, list the entries
inserted into the chart, based on grammar G1, before anything in the input is
examined. Then list what is entered into the chart by the algorithm when the
first word of the input, John, is processed. [5 marks]

Page 5 of 6

3. (a) Explain what it is for a context-free grammar to be ambiguous. What are the
consequences of this for the efficiency of any parsing process for such languages?
Ignore issues of lexical ambiguity: Assume each word belongs to only one class.

[3 marks]

(b) Consider the following probabilistic context-free grammar. Where probabilities
are not assigned explicitly, you can assume all rules for that nonterminal are
equally probable. The rules of the grammar are (the top symbol is S):

S → AS [0.1] | SS [0.8] | B [0.1]

A → a | b | c

B → b | c

Using the above grammar, provide two derivation trees for the following sentence
in the language, and provide a brief explanation of how the ambiguity arises:

abbc [4 marks]

(c) Calculate the probability for both your derivation trees and indicate the most
likely structure for the sentence. Ignore probabilities for productions with A or
B on the left hand side. These probabilities are not supplied. [4 marks]

(d) Redesign the above grammar by changing the probabilities on the productions so
that the choice of more likely derivation is reversed. Recalculate the probabilities
to demonstrate this is the case. [6 marks]

(e) What is the language generated by the grammar? Justify your answer. [4 marks]

(f) Devise a new, unambiguous, grammar that generates the same language as the
original grammar. [4 marks]

Page 6 of 6

Part A – Answers

1. What is tokenization and what feature does a text need, in order for it to be easily
tokenized?

Answer: Tokenization breaks a text consisting of a continuous sequence of char-
acters into a sequence of discrete tokens, usually words. For a text to be easily
tokenized, it must have obvious places – like white space or punctuation – where
one can be easily recognized as separating the sequence of characters making up one
token from those making up another.

points: 1 point if tokenization is defined, but a necessary feature isn’t specified.

2. In what way does a text with a high type/token ratio look different from a text
with a low type/token ratio?

Answer: TheType/token ratio is the ratio of the number of distinct word types
to the total number of tokens in a text. (The text “buffalo buffalo buffalo” has a
type/token ratio of 1/3, while “buffalo buffalo buffalo buffalo” has a type/token ratio
of 1/4.) A text with a hight t/t ratio will contain alot of different words, while one
with a low t/t ratio (as with one that only uses the 900 words of Basic English) will
use the same words over and over again.

points: 1 point if type/token ratio is defined, but nothing is mentioned about what
texts with high and low t/t would look like.

3. Briefly describe two methods used by part-of-speech taggers to deal with unknown
words (ie, words that didn’t occur in the data used to train the tagger).

Answer: Methods that might be mentioned include:

• Skip over word without assigning a label;

• Assign the word the most common part-of-speech (in English, “noun”);

• Use a regular expression to analyse the word and assign its type based on its
internal structure.

points: 1 point for each correct method.

4. Griven a context-free grammar, what is the relationship between a derivation of
the string according to the grammar and a tree diagram for the string according
to the same grammar?

Answer: A derivation shows the sequence of grammar rules used in deriving the
string from the start symbol. A tree diagram represents the set of equivalent deriva-
tions, independent of the order in which they apply.

points: 1 point if the student just correctly explains a derivation. 0 points if the
answer says that a tree diagram represents all derivations of the string.

Page 7 of 6

5. Given a grammar rule

A → B C

briefly describe how it would be used in the reduce operation of a shift-reduce parser.

Answer: A shift-reduce parser stores symbols in its stack. If popping the stack
yields the symbols C and B, then A can be pushed onto the stack to replace them.

Points: 1 point for knowing something about a shift-reduce parser. 2 points for full
answer.

6. Name one type of ambiguity that increases the work load for a a chart parser. Briefly
explain what extra work needs to be done.

Answer: Types of ambiguity that a student might correctly mention here are:

• Part-of-speech ambiguity, as each different PoS of a word instantiates must be
added separately to the chart.

• Attachment ambiguity (which allows the same word or phrase to attach at
different parts of the growing tree), as each different attachment leads to a
different entry in the chart.

Points: 1 point for a type of ambiguity being named but not explained. 2 points for
both.

7. Name one type of ambiguity that does not increase the work load for a chart parser.
Briefly explain why the work load is not increased.

Answer: All the types of ambiguity that a student can correctly mention here involve
semantics:

• lexical ambiguity, as a term with multiple meanings (all with the same part-of-
speech) will only have a single entry in the chart;

• referential ambiguity, as chart parsing ignores what a phrase refers to in the real
world or the world created by the text;

• scopal ambiguity, as chart parsing does not associate a text with its interpreta-
tion, and scope only affects the interpretation of a text.

Points: 1 point for a type of ambiguity being named but not explained. 2 points for
both.

8. Simplify the following expression using both alpha-conversion and beta-reduction:

λ y . λ x . love(x,y)(x)(john)

Page 8 of 6

Answer: λ y . λ x . love(x,y)(x)(john) ⇒ λ y . λ z . love(z,y)(x)(john) ⇒ λ z .
love(z,x)(john) ⇒ love(john,x)

Points: 0 points if student fails to rename the lambda variable x via alpha-conversion
before carrying out the beta-reduction. 1 point, if they rename the variable but fail
to get the correct answer. 2 points otherwise.

9. Briefly describe one property of linear-indexed grammars that is not shared by
context-free grammars?

Answer: A linear-indexed grammar is a weak form of context-sensitive grammar.
One symbol in each rule can be indexed, and the index incremented or decremented
via the rule application. This adds additional memory of what’s been seen in the
input. The symbols in CFGs don’t have indices, so not as many input features can
be remembered, so the grammar is less powerful.

Points: 1 point for recognizing that LIGs are a form of CSGs.

10. What does it mean for a grammar to be weakly adequate for a Natural Language?

Answer: It means that the grammar generates all and only the strings of the lan-
guage, but doesn’t necessarily assign them a correct structure from which their se-
mantics can be computed.

11. This is a good proposal because there are no epsilon productions, the first sets of
each production are obvious and disjoint so recursive descent will work efficiently
with this grammar..

12. M3 is deterministic because if a state (s1, s2) in the stateset of M3 has an a transition
then there is exactly one a transition for s1 in M1 and exactly one a transition from
s2 in M2 because they are deterministic machines so there is is exactly one transition
from (s1, s2) in M3.

13. n because M is a DFA and to derive M̄ all we need to do is change accepting states
of M to non-accepting states in M̄ and non-accepting states of M to accepting states
of M̄ .

14. The grammar is not LL(k) for any k. To make the choice of production from S we
always need to consider the whole input to see if it is odd or even so the grammar
cannot be LL(k) for any k.

15. The machine accepts {anbm$ | n ≥ m ≥ 0}. In state 1 the stack is used to count the
number of as input, on a b input the machine makes a transition to state 2 where
it counts down for each b read until the initial stack symbol is popped when a $ is
read. In addition state 2 contains a transition that allows us to discard an A symbol
fromthe stack so the number of bs can be smaller then the number of as.

Page 9 of 6

16. The language is anbncn, n > 0. The language is context-sensitive and not context-
free.

17. This must be converted to a DFA before applying the algorithm. The complement
of the language is {ε} Th

18. {a, c, d, ε}

19. {c, b, a}

20. No it is not ambiguous because the choice of production is always determined by the
last symbol in the production (so we can parse deterministically from right to left).

Page 10 of 6

Part B – Answers

1. Question 1

(a) Award three marks for constructing the system of equations and 3 marks for
solving them. The equations are:

R1 = aR2 + ε

R2 = bR3

R3 = cR4 + εR1

R4 = εR1

Of the three points for solving the equations, award one point for finding that
R1 = abcR1 + abR1 + ε and two points for solving the equation R1 = (abc +
ab)R1 + ε using the fact that R = A∗B is the smallest solution to the equation
R = AR + B. This gives us: R1 = (abc + ab)∗.

(b)

state a b c
{q1} {q2}
{q2} {q3, q1} {q4, q1}
{q3, q1} {q2} {q4, q1}
{q4, q1} {q2}

Award 2 marks for an indication that the student knows the construction, three
marks for the table, interpolated for inaccuracies, one mark for getting final
states right.

(c) i. The technician is wrong - one mark.

ii. The language is not regular, this can be justified by looking at the depen-
dencies and/or by outlining a pumping lemma proof. For example, if we
choose s = (ac)k +bk, where k is parameter in the pumping lemma then this
is a suitable choice of string. I’d award up to two marks for the observation
that it is not regular and that the dependencies show this. An additional
mark for some discussion of the use of the pumping lemma.

iii. The easiest way to construct this is to use the original FSM as a starting
point, extending the transitions to manipulate the stack so a symbol is
pushed every time there is an ε transition from q3 to q1, then adding a
transition labelled + from the final state of the original FSM to a machine
that checks the number of bs read is eqal to the number of symbols pushed
onto the stack in the initial phase. Award 1 mark for an awareness of PDA
diagrams, one mark for pushing the symbols and one mark for checking the
number of symbols on the stack.

Page 11 of 6

(d) We would need to use a context-free grammar (one mark). The grammar gen-
erates matched sequences ab and c or the sequence abc with no matching c and
does this iteratively (two marks). This is an example (award up to three marks):

S → + | abcS | abSc

Page 12 of 6

2. Question 2

Given the grammar G1:

G1 S → NP VP NPR → John (proper name)
NP → NPR N → spider (noun)
NP → N N → plants (noun)
NP → N N N → seeds (noun)
NP → PossNP NP TV → plants (transitive verb)
PossNP → NP Poss Poss → ’s (possessive)
VP → TV NP

and the sentence S1

S1: John’s spider plants seeds

where John’s is tokenized into the two tokens John and ’s :

(a) Draw the parse trees for all analyses of S1 according to grammar G1.

Answer: There is only ONE parse tree for the sentence, corresponding to the
bracketting

(S (NP (PossNP (NP (NPR John)) (Poss ’s)) (NP (N spider))) (VP (
TV plants)(NP (N seeds))))

(b) Is sentence S1 unambiguous with respect to grammar G1, or locally ambiguous
with respect to G1, or globally ambiguous with respect to G1? Briefly explain
your answer.

Answer: The sentence is locally ambiguous because the initial substring John’s
spider plants has two analyses, both as an NP, and as an NP followed by a
transitive verb.

(c) Assuming that a recursive descent (RD) parser applies the rules of grammar G1
in the given order, describe how an RD parser would proceed to parse S1, up
until the first point at which it would be forced to back up.

Answer: The parser would apply the rules S → NP VP, NP → NPR, NPR
→John, VP→TV NP, and TV → plants. Then it would discover that plants
doesn’t match the input token ’s, and would have to back up, undoing the last
four rules, and then choosing the next NP expansion rule.

(d) Draw the chart that the CYK algorithm would construct for S1 based on gram-
mar G1.

Answer:

Page 13 of 6

1 2 3 4 5
0 NP PossNP NP S

NPR
1 Poss

2 NP
N

3 TV VP
NP
N

4 NP
N

(e) For the initial step of the Earley (active chart parsing) Algorithm, list the entries
inserted into the chart, based on grammar G1, before any part of the input is
examined. Then list what is entered into the chart by the algorithm when the
first word of the input, John, is processed.

Answer: During the initial step, the following entries would be made:

i. γ → .S (insert root symbol into the chart)
ii. S → . NP VP
iii. NP → . NPR
iv. NP → . N
v. NP → . N N
vi. NP → . PossNP NP
vii. PossNP → . NP Poss

When the first word John is processed, the following entries would be added:

i. NPR → John .
ii. NP → NPR .
iii. S → NP . VP
iv. PossNP → NP . Poss

Page 14 of 6

3. Question 3

(a) One mark for the definitions of ambiguity. Two marks for a short discussion of
diferent parsing approaches, their applicability to ambiguous grammars and the
time efficiency of the different approaches.

(b) The two parses differ on whether the S → S S is used or not. The use of this
production gives rise to the less likely parse. The other is right linear and uses
the first and last production only. Three marks for the parses and one marks
for the explanation.

(c) The probabilities for the parts of the parse that differ are: [[ab][bc]] – has a
probability of 0.8× 0.8× 0.1× 0.1× 0.1× 0.1 and [a [b [b c]]] has a probability
of 0.1× 0.1× 0.1× 0.1.

(d) The approach here would be to reduce the probability of the first production
for S very significantly, say to 0.01 and increase the probability of the last
production to 0.19. Allocate 4 marks for the redesign and two marks for the
recalculation.

(e) The language generated is ((a+b+c)∗(b+c))+ because the second production just
generates sequences of sentences in the language and the remaining productions
describe the regular language (a + b + c)∗(b + c).

(f) Any grammar that generates the language. For example:

S → AS | BS | B

A → a | b | c

B → b | c

Allocate 4 marks for a fully correct answer, deduct 1 mark for each distinct
defect in the answer.

Page 15 of 6

