
Inf2A 2012–13: Assignment 1

The Language Processing Pipeline for Micro-Haskell

Issued October 14, 2013

Version 1 (4pm, October 14, 2013)

The deadline for this assignment is 4pm, Monday 28 October 2013.

Overview

The objective of this practical is to illustrate the language processing pipeline in the
case of a particular formal language: a rudimentary programming language, which we
call Micro-Haskell (or MH for short) since it is a small (but interesting) fragment of the
Haskell programming language. Although the practical is self contained, you will find it
helpful to refer to the introduction to Micro-Haskell given in Lecture 13. Prior knowledge
of Haskell itself is not required for this assignment. However, students without previous
experience with Haskell may need to invest more time in understanding the practical.

The practical illustrates all stages of the language processing pipeline for program-
ming languages, taking us from a source program, written in MH, to execution of the
program. In our case, the pipleline has four stages: lexing, parsing, type-checking and
evaluation (executing the program). Your task is to provide language-specific material
to assist with the first three cases: lexing, covered in Part A of the practical; parsing,
covered in Part B; and type-checking, covered in Part C.

The code implementing the lexer, parser, type-checker and evaluator will all be
implemented in Java. Several general-purpose components are provided for you. Your
task is to supply the parts specific to MH, using your understanding of the course
material. Once you have finished, you can link up your software to a simple evaluator
(which is provided for you) to obtain a complete working implementation of MH.

Of course, many libraries of lexing and parsing tools in Java are available on the
Internet, but the point of this practical is to build things up from first principles in
order to understand how they work. You should therefore not attempt to use any
lexer or parser utilities you may find online, nor any tools such as StringTokenizer or
StreamTokenizer that might otherwise appear tempting.

1

Instructions

To begin, download the code file Inf2A_Prac1_Files.zip from the Informatics 2A
Assignments webpage. On a DICE machine, this can be unpacked using

unzip Inf2A_Prac1_Files.zip

This will build a subdirectory Inf2A_Prac1_Files inside your working directory (folder),
within which you will find all source files needed for the assignment. Look first at the
file MH_example.txt, which provides a sample of Micro-Haskell.

The assignment comprises three assessed tasks carried out as Parts A–C. In each
case you have to complete a Java file and submit it from a DICE machine, using the
submit command. The filenames and submit instructions you need to use for each part
are listed below.

Part Submit command Correct Style Total
A submit inf2a 1 MH_Lexer.java 30 5 35
B submit inf2a 1 MH_Parser.java 25 5 30
C submit inf2a 1 MH_Typechecker.java 25 10 35

80 20 100

It is also possible to submit your solutions to all three parts simultaneously:

submit inf2a 1 MH_Lexer.java MH_Parser.java MH_Typechecker.java

When using the submit command, repeated submissions are possible. Resubmissions
overwrite previous submissions, and the earlier versions are lost. Only the last file
submitted for each part will be marked. Ensure that all submissions are made before
the deadline (4pm on Monday 28th October). Late submissions will not be marked!
Also, you must ensure that your Java files are correctly named (Linux filenames are case
sensitive), and that your Java code compiles on a DICE machine. (It will be marked on
a DICE machine!) The Java version currently installed on DICE is Java 1.7.0. If you
depart from the above instructions, you will automatically receive a 5-mark penalty, but
you also run the risk that your assignment will not be marked at all.

Each part will be marked in two components. The majority of marks will be awarded
on the basis of the correctess of the code. This mark will be determined using an
automarker. The remaining marks will be assigned to reward good programming style
and the quality of the commenting. The table above gives a breakdown of the marks
available for each part.

Once you have completed Parts A–C, you can proceed to Part D, whose purpose is
to give you a chance to appreciate the fruits of your labour by executing your lexed,
parsed and type-checked MH code. This part is not assessed.

2

Part A: Lexing in Micro-Haskell [35 marks]

In this part, we construct a lexical analyser for MH. A general-purpose longest-match
lexer is already provided. Your task is to supply deterministic finite-state machines that
serve as recognizers for the various classes of lexical tokens in the language.

Look at the provided file GenLexer.java. It begins with some Java functions that
define certain useful classes of characters: letter , small , large, digit , symbolic,whitespace,
newline. Next comes a Java interface DFA which defines the functionality that any finite
state machine has to provide. Some of this is provided in the class GenAcceptor which
follows, but notice that this class contains stubs for five ‘abstract’ methods whose imple-
mentation will be specific to the particular DFA in question. There then follow three ex-
amples of how to construct implementations of particular DFAs: EvenLetterAcceptor,
AndAcceptor and SpaceAcceptor.

Notice that states are represented by integers, with 0 as the initial state. Besides
the transition operation and the set of accepting states, our DFAs here must also be
equipped with a set of one or more dead states: that is, non-accepting states from which
no sequence of transitions can lead to an accepting state. Note also that our DFAs
implement the method String lexClass(), which provides the name of the lexical
class they are associated with. This is done because we wish our lexer to output a
stream of tokens each tagged with their lexical class.

Your objective in Part A is to implement DFAs in the same style corresponding to
the lexical classes of micro-Haskell. This is to be done in the file MH_Lexer.java, which
currently provides a template containing some gaps for you to fill in. For the first six of
these gaps, follow the pattern of the examples in GenLexer.java to construct DFAs for
the following lexical classes defined by regular expressions (these correspond closely to
lexical classes of actual Haskell).

• A class VAR of variables, defined by

small (small + large + digit + ’)∗

• A class NUM of numeric literals, defined by

digit digit∗

• A class BOOLEAN of boolean literals, defined by

True + False

3

• A class SYM of symbolic tokens, defined by

symbolic symbolic∗

• A class of whitespace elements, defined by

whitespace whitespace∗

• A class of comments, defined by

- - -∗ (nonSymbolNewline nonNewline∗ + ε)

where nonSymbolNewline is the set of all characters except those of symbol or
newline, and nonNewline is the set of all characters except those of newline. Note
that - - -∗ effectively means ‘two or more dashes’.

The names of the last two classes, implemented by the lexClass() method, should both
be the empty string. This will notify the lexer that tokens of these classes should be
discarded.

In addition to these classes, keywords such as if and special symbols such as ; will
require a ‘singleton’ lexical class all to themselves. For this purpose, we provide an
operation tokAcceptor which yields a DFA that accepts a specified string (called tok)
and nothing else. Fill in the gap in the code for this operation to provide such a DFA.
Here the name of the lexical class should be identical to the string itself — this will
serve to make the specific token we are dealing with visible to the parser.

The lexical classes we require for MH are now the six lexical classes listed above,
together with singleton classes for the five keywords Integer, Bool, if, then, else and
for the three special symbols (,), ;.

Following the example of class DemoLexer in the file GenLexer.java, add a few
lines of code to construct acceptors for these fourteen classes, and put these together
in an array called MH_acceptors. The acceptors should be listed in order of priority,
with highest priority first, which should be sensibly chosen so that keywords like if are
assigned an appropriate lexical class. To obtain full marks, your chosen priorities should
emulate the lexing behaviour of the Glasgow Haskell Compiler (ghc).

The MH_acceptors array is fed to a general-purpose routine that performs longest-
match lexing (also known as maximal munch) using the method described in Lecture
6. Take a brief look at the code for this in GenLexer.java, and check that you broadly
understand what it is doing.

4

You should now be able to compile GenLexer.java and your file MH_Lexer.java to
create a lexer for MH. To test your lexer, you might wish to adapt the LexerDemo code
in GenLexer.java; this will allow you to create a simple command-line driven lexical
analyser for MH. You are not required to submit this test code, however.

Before we leave the subject of lexing, take a quick glance at the code provided in
CheckedSymbolLexer.java. This performs some mild post-processing on the stream of
lexical tokens: symbolic tokens are checked to ensure that they are among the tokens
that feature in MH:

:: -> = == <= + -

If they are, then the lexical classname SYM is replaced with the token itself, just as for
keywords and (,), ;.

Submission: Submit your answer to part A, from a DICE machine, using the
command: submit inf2a 1 MH_Lexer.java

Part B: An LL(1) parser for Micro-Haskell [30 marks]

Take a look at the provided file GenParser.java. This begins with an interface TREE

and a class STree for representing syntax trees (for any context-free grammar). The
class GenParser then provides an implementation of the general LL(1) parsing algorithm
as described in lectures (again, check that you broadly understand it).

In order to complete this and obtain a working parser, some grammar-specific in-
gredients must be provided: a parse table and a choice of start symbol. The class
EvenAndParser gives a simple example of how to do this, for an artificial language that
uses the lexical classes defined in GenLexer.java. Note in particular the convention that
the names of nonterminals are identified by adding the symbol # (we can get away with
this because # doesn’t itself feature in any lexical tokens of MH). You can try out this
parser on the sample input file EvenAnd_example.txt, by compiling GenParser.java1

and then typing

java ParserDemo EvenAnd_example.txt

Your task is to implement a similar working parser for the language MH, in the file
MH_Parser.java (which is discussed below), following the pattern of EvenAndParser.

1Don’t worry if you get a warning about unchecked operations when you do this — it will work
anyway.

5

Prog → ε | Decl Prog

Decl → TypeDecl TermDecl

TypeDecl → VAR :: Type ;

Type → Type1 TypeOps

TypeOps → ε | -> Type

Type1 → Integer | Bool | (Type)

TermDecl → VAR Args = Exp ;

Args → ε | VAR Args

Exp → Exp1 | if Exp then Exp else Exp

Exp1 → Exp2 Op1

Op1 → ε | == Exp2 | <= Exp2

Exp2 → Exp3 Ops2

Ops2 → ε | + Exp3 Ops2 | - Exp3 Ops2

Exp3 → Exp4 Ops3

Ops3 → ε | Exp4 Ops3

Exp4 → VAR | NUM | BOOLEAN | (Exp)

Figure 1: Grammar for Micro-Haskell

Now we consider the grammar of MH itself. The terminal symbols are the names of
lexical classes in tokens output by CheckedSymbolLexer. The complete list of these is
as follows:

VAR NUM BOOLEAN Integer Bool if then else

() ; :: -> = == <= + -

The start symbol of the grammar is Prog , and the productions are as follows. (For
legibility, we omit the # symbol, instead distinguishing nonterminals by choice of font.)

The full grammar is presented in Figure 1. If this looks daunting at first, the following
observations may be helpful:

• The grammar for types (i.e. the rules for Type,TypeOps ,Type1) is a self-contained
sub-grammar that can be understood in isolation; see Lecture 13.

6

• The grammar for expressions (the rules for all nonterminals from Exp onwards) is
another self-contained sub-grammar, and is broadly similar in its workings to the
LL(1) grammar for arithmetic expressions from Lecture 12. Note that the produc-
tions for Exp3 and Ops3 are intended to cater for multiple function applications,
such as f x y.

• It may be helpful to look at the example in MH_example.txt in conjunction with
the rules above.

Once you feel you have assimilated the grammar, find yourself a large sheet of paper
and work out the complete LL(1) parse table. (Most of the entries will be blank, so
don’t panic!) You may find that some calculations of First and Follow sets help you to
do this; however, you will not be required to submit these calculations or the written-out
parse table you construct.

Now open the file MH_Parser.java. You will see that the right hand sides of all the
grammar rules have already been declared for your convenience, so all you have to do
is to supply an implementation of the parse table itself in the style of EvenAndParser.
You may make use of auxiliary definitions and other reasonable devices to reduce the
amount of code you need to write, provided that your code remains clearly readable and
its correspondence to the parse table you have drawn up remains transparent.

After completing and compiling this, you will now be able to try out your parser on
the sample source file provided:

java MH_ParserDemo MH_example.txt

If this reports successful parsing, it’s certainly an encouraging sign that your parser is
largely correct and will obtain a reasonable mark. However, to ensure your parser is
completely correct, you will have to do some further testing, since (a) there are possible
parsing scenarios not represented by this small example, and (b) you also need to ensure
that your parser rejects incorrect programs and that the error report it produces is
plausible.

Submission: Submit your answer to part B, from a DICE machine, using the
command: submit inf2a 1 MH_Parser.java

7

Part C: Typechecking for Micro-Haskell [35 marks]

In this section, you will implement critical parts of a typechecker for MH.
The LL(1) grammar we have been using serves to disambiguate inputs and make

them readily parseable; but once these issues have been got out of the way, it is much
more convenient to work with simpler trees known as abstract syntax trees (ASTs) in
which extraneous detail has been stripped away. For example, as in Lecture 13, types
in MH are conceptually just trees for the grammar:

Type → Integer | Bool | Type -> Type

Look at the file Types.java, which defines a Java representation of MH types in this
stripped-down form. The interface MH_TYPE declares various operations one can perform
on such types (check that you understand what they are intended to do), while further
down, the class MH_Type_Impl provides predefined constants for the MH types Integer
and Bool, as well as a constructor for building an arrow type from two previously
existing MH types. In the typechecking code you will be writing, these may be utilized
as follows:

MH_Type_Impl.IntegerType ; // AST for Integer

MH_Type_Impl.BoolType; // AST for Bool

new MH_Type_Impl (t1,t2); // AST for (t1->t2)

Clearly, we will need a way to convert syntax trees as produced by the parser
into ASTs of this kind. This is done by the provided methods convertType and
convertType1 in Types.java. A good warm-up to your own task would be to try
and understand the workings of convertType and convertType1 with the help of the
comments provided.

A similar notion of abstract syntax trees is also required for expressions (trees with
topmost label #Exp). In effect, ASTs for expressions are just trees for the simplified
grammar:

Exp → VAR | NUM | BOOLEAN | Exp Exp | Exp infix Exp | if Exp then Exp else Exp

where infix ranges over ==, <=, +, -. Look in the file Expressions.java at the interface
MH_EXP, which declares various operations that can be performed on such trees. The
intended meanings of these operations are all you need to understand from this file (and
you can ignore isLAMBDA). Their workings are further explained by commented examples
in the file Expressions.java immediately below the MH_EXP interface. You don’t need

8

to get to grips with the class MH_Exp_Impl, which contains (among other things) some
code for converting trees returned by the parser into ASTs for expressions.

Assuming the conversions to ASTs have already been done, your task is to write a
typechecker for ASTs, by completing the body of the method computeType in the file
MH_Typechecker.java. More precisely, your code should compute the MH type of an
expression given as an AST exp of Java type MH_EXP, returning the result as an AST of
Java type MH_TYPE. If the expression is not correctly typed, your code should flag up a
type error, which you can do by means of the command:

throw new TypeError ("blah blah") ;

Each time such a command appears, the string should provide a brief description of
the nature of the type error in question. Such error messages should be designed to
be helpful to MH programmers who need to identify and correct type errors in their
programs.

There is one other important ingredient to be explained. The type of an expression
such as if x then y else z, or even whether it is well-typed at all, will depend on
the types ascribed to the variables x, y, z. In general, then, an expression exp will
have to be typechecked relative to a type environment which maps certain variables to
certain types associated with them. This is the purpose of env, the second argument to
computeType. You may access the type associated with the variable x, for instance, by
calling env.typeOf("x").

The definition of the type of an expression (if it has one) is given compositionally :
that is, it is computed from the types of its subexpressions. This will be reflected in the
recursive nature of your implementation of computeType: it should compute the type of
any subexpressions in order to obtain the type of the whole expression. Here are some
hints on how this should work:

1. The types of NUMs and BOOLEANs are what you think they are.

2. You should assume that each of the infix operations accepts only integer argu-
ments; however, the type of the resulting expression will depend on the infix
operation in question.

3. In an application expression e1 e2, the type of e2 should match the argument type
expected by e1, and you should think about what the type of the whole expression
will be.

4. An expression if e1 then e2 else e3 may in principle have any type; however, you
should consider what the types of e1, e2, e3 respectively will need to be in order for
the whole expression to have type t.

9

A final hint on the Java side. To test whether two given type ASTs are equal, you
should use the equals method from the interface MH_TYPE, not the == operator.

As a rough guideline, the model implementation of computeType consists of about
40 lines of Java code.

When you have finished, compile the files Types.java, Expressions.java and
MH_Typechecker.java (in that order), and try executing

java MH_Typechecker MH_example.txt

Once your typechecker works, this will report that the parse, type conversion and type-
check have all been successful. To see what it is doing, look again at MH_example.txt.
The system is using your code to check that the right hand side of each function defi-
nition has the expected type relative to an environment that can be inferred from the
types specified in the MH code. (All this is managed by the remaining code in the file
MH_Typechecker.java.) You should also try out your typechecker on other MH pro-
grams — including some that contain type errors to check that your code catches them
correctly and supplies appropriate error messages.

Submission: Submit your answer to part C, from a DICE machine, using the
command: submit inf2a 1 MH_Typechecker.java

Part D: Execution of Micro-Haskell

This part of the practical, which is not for credit, puts all the pieces together to obtain
a full working implementation of Micro-Haskell.

The file Evaluator.java contains an evaluator for Micro-Haskell. It uses the other
parts of the practical to lex, parse and type-check a program, after which, the resulting
abstract syntax tree for the program is executed using a small-step operational semantics
(as will be covered in Lecture 27). This results in an implementation that is very
slow compared with a real-world implementation of Haskell. But its purpose is to
illustrate how the basic principle of language processing feed into the construction of
a compiler/interpreter/evaluator. Indeed, the source code for Evaluator.java is very
consise, because the bulk of the work in processing a source program has already been
done at earlier stages of the language processing pipeline. If you are interested in how
to produce a more efficient implementation, then take the UG3 Informatics course on
Compiling Techniques next year!

To use the evaluator, once you have completed the rest of the practical, compile
Evaluator.java and then run it on the source file of your choice, e.g.:

10

java Evaluator MH_example.txt

This will load and typecheck the MH program, and display a prompt MH>. Type in an
expression you would like to evaluate, and hit return. The expression may involve the
functions declared in your MH program. Do this as many times as you like; e.g.:

MH> 3+5

...

MH> fib 6

...

MH> gcd 104 (fib 12)

...

MH> gcd 104

...

To quit, hit CTRL-c.

11

