Inf1-OP
Conditionals and Loops

Volker Seeker, adapting earlier version by Perdita Stevens and Ewan Klein

School of Informatics

February 26, 2018

\(^1\)Thanks to Sedgewick&Wayne for much of this content
Tutorials

Start this week — please let the ITO know if you need to switch tutorial groups.
Labs continue this week and every week (except FLW).
Learning Outcomes for this week

- Use `if` and `if-else` statements to execute a sequence of statements based on the truth value of Boolean expressions.
- Use nested `if-else` statements to compute results based on a number of mutually exclusive alternatives.
- Use `while`-loops to repeatedly execute a sequence of statements based on the truth value of Boolean expressions.
- Use `for`-loops to repeatedly execute a sequence of statements based on an initialization statement, a Boolean test, and an increment statement.
- Use `for`-loops to compute finite sums and finite products.
- Use Eclipse to write, compile, execute and test Java code.
A Foundation for Programming

- Objects
- Functions and modules
- Graphics, sound and image I/O
- Arrays
- Conditionals and loops
- Math
- Text I/O
- Primitive data types
- Assignment statements
A Foundation for Programming

primitive data types
assignment statements
Math
text I/O
conditionals and loops
arrays
graphics, sound and image I/O
functions and modules
objects

primitive data types
assignment statements
Conditional Statements
Control Flow

Control flow:

- A sequence of statements that are actually executed in a program
Control Flow

Control flow:

- A sequence of statements that are actually executed in a program
- **Conditionals and loops** enable us to choreograph control flow
If Statement

If / conditional statement:

- Evaluate a boolean expression E.
- If value of E is true, execute some statements.
- If value of E is false, execute some other statements — this is the else part of a conditional statement.

```java
if (boolean expression) {
    statement T;
} else {
    statement F;
}
can be any sequence of statements
```
If Statement

If / conditional statement:

- Evaluate a boolean expression E.
- If value of E is true, execute some statements.
- If value of E is false, execute some other statements — this is the else part of a conditional statement.

```java
if (boolean_expression) {
    statement_T;
}
else {
    statement_F;
}
```
can be any sequence of statements
If Statement

If / conditional statement:

- Evaluate a boolean expression E.
- If value of E is true, execute some statements.
- If value of E is false, execute some other statements — this is the else part of a conditional statement.

```java
if (boolean expression) {
    statement T;
}
else {
    statement F;
}
can be any sequence of statements
```

Example:
```java
if (x > y) {
    int t = x;
    x = y;
    y = t;
}
```
If Statement

If / conditional statement — sometimes called branching structures:

- If boolean expression is true, execute statement T.
- If boolean expression is false, execute statement F.
If Statement

If / conditional statement:

- Evaluate a boolean expression.
- If true, execute some statements.
- If false, execute some other statements.

```java
x = -x;
if (x < 0) x = -x;
x > y ?
true false
if (x > y) max = x;
else       max = y;
max = y;
```
If Statement: Examples

<table>
<thead>
<tr>
<th>absolute value</th>
<th>if ((x < 0)) (x = -x;)</th>
</tr>
</thead>
</table>
| **put \(x\) and \(y\) into ascending order (swap)** | if \((x > y)\) {
 int temp = x;
 x = y;
 y = temp;
} |
| **maximum of \(x\) and \(y\)** | if \((x > y)\) max = x;
else max = y; |
| **error check for division operation** | if \((den == 0)\) {
 System.out.println("Division by zero");
} else {
 System.out.println("Quotient = " + num / den);
} |
Loops (While)
While Loop

The while loop is a structure for expressing repetition.

- Evaluate a boolean expression.
- If true, execute some statements.
- Repeat.
The while loop is a structure for expressing repetition.

- Evaluate a boolean expression.
- If true, execute some statements.
- Repeat.

while (boolean expression) {
 statement 1;
 statement 2;
}
While Loop: Powers of Two

Print powers of 2 that are $\leq 2^n$ for some n.

- Increment loop counter i by 1, from 0 to n.
- Double val each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
    System.out.println(i + " " + val);
    i = i + 1;
    val = 2 * val;
}
```

Output

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
</tr>
</tbody>
</table>
While Loop: Powers of Two

Print powers of 2 that are $\leq 2^n$ for some n. Set $n = 6$.

- Increment loop counter i by 1, from 0 to n.
- Double val each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
    System.out.println(i + " " + val);
    i = i + 1;
    val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
</tr>
</tbody>
</table>
While Loop: Powers of Two

Print powers of 2 that are $\leq 2^n$ for some n. Set $n = 6$.

- Increment loop counter i by 1, from 0 to n.
- Double val each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
    System.out.println(i + " " + val);
    i = i + 1;
    val = 2 * val;
}
```

Output:

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
<th>$i \leq n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>true</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>true</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>true</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>true</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>false</td>
</tr>
</tbody>
</table>
While Loop: Powers of Two

Print powers of 2 that are $\leq 2^n$ for some n. Set $n = 6$.

- Increment loop counter i by 1, from 0 to n.
- Double val each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
    System.out.println(i + " " + val);
    i = i + 1;
    val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>false</td>
<td></td>
</tr>
</tbody>
</table>
While Loop: Powers of Two

Print powers of 2 that are $\leq 2^n$ for some n. Set $n = 6$.

- Increment loop counter i by 1, from 0 to n.
- Double val each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
    System.out.println(i + " " + val);
    i = i + 1;
    val = 2 * val;
}
```
While Loop: Powers of Two

Print powers of 2 that are $\leq 2^n$ for some n. Set $n = 6$.

- Increment loop counter i by 1, from 0 to n.
- Double val each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
    System.out.println(i + " " + val);
    i = i + 1;
    val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
<th>i ≤ n</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>true</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>true</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>true</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>true</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>false</td>
<td></td>
</tr>
</tbody>
</table>
```

Start Again
Print powers of 2 that are \( \leq 2^n \) for some \( n \). Set \( n = 6 \).

- Increment loop counter \( i \) by 1, from 0 to \( n \).
- Double \( \text{val} \) each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}
```

Output:

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
<th>( i \leq n )</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>false</td>
<td></td>
</tr>
</tbody>
</table>

Start Again
While Loop: Powers of Two

Print powers of 2 that are \( \leq 2^n \) for some \( n \). Set \( n = 6 \).

- Increment loop counter \( i \) by 1, from 0 to \( n \).
- Double \( \text{val} \) each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
<th>i ( \leq ) n</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>false</td>
<td></td>
</tr>
</tbody>
</table>

Start Again
While Loop: Powers of Two

Print powers of 2 that are \( \leq 2^n \) for some \( n \). Set \( n = 6 \).

- Increment loop counter \( i \) by 1, from 0 to \( n \).
- Double \( \text{val} \) each time.

```
int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}
```
While Loop: Powers of Two

Print powers of 2 that are $\leq 2^n$ for some $n$. Set $n = 6$.

- Increment loop counter $i$ by 1, from 0 to $n$.
- Double $val$ each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>$i$</th>
<th>$val$</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td>1 2</td>
</tr>
</tbody>
</table>

Start Again
Print powers of 2 that are $\leq 2^n$ for some $n$. Set $n = 6$.

- Increment loop counter $i$ by 1, from 0 to $n$.
- Double $val$ each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>$i$</th>
<th>$val$</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>
Print powers of 2 that are $\leq 2^n$ for some $n$. Set $n = 6$.

- Increment loop counter $i$ by 1, from 0 to $n$.
- Double $val$ each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td>2 4</td>
</tr>
</tbody>
</table>
While Loop: Powers of Two

Print powers of 2 that are $\leq 2^n$ for some $n$. Set $n = 6$.

- Increment loop counter $i$ by 1, from 0 to $n$.
- Double $val$ each time.

```
int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}
```

### Output

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
While Loop: Powers of Two

Print powers of 2 that are $\leq 2^n$ for some $n$. Set $n = 6$.

- Increment loop counter $i$ by 1, from 0 to $n$.
- Double $val$ each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
<th>i $\leq$ n</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start Again
While Loop: Powers of Two

Print powers of 2 that are $\leq 2^n$ for some $n$. Set $n = 6$.

- Increment loop counter $i$ by 1, from 0 to $n$.
- Double $val$ each time.

```
int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
<th>i $\leq$ n</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>

Start Again
Print powers of 2 that are \( \leq 2^n \) for some \( n \). Set \( n = 6 \).

- Increment loop counter \( i \) by 1, from 0 to \( n \).
- Double \( val \) each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}
```
While Loop: Powers of Two

Print powers of 2 that are \( \leq 2^n \) for some \( n \). Set \( n = 6 \).

- Increment loop counter \( i \) by 1, from 0 to \( n \).
- Double \( \text{val} \) each time.

\[
\begin{array}{cccc}
\text{i} & \text{val} & \text{i} \leq n & \text{Output} \\
0 & 1 & \text{true} & 0 & 1 \\
1 & 2 & \text{true} & 1 & 2 \\
2 & 4 & \text{true} & 2 & 4 \\
3 & 8 & \text{true} & 3 & 8 \\
4 & & & & \\
\end{array}
\]

```java
int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}
```
While Loop: Powers of Two

Print powers of 2 that are $\leq 2^n$ for some $n$. Set $n = 6$.

- Increment loop counter $i$ by 1, from 0 to $n$.
- Double $val$ each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>$i$</th>
<th>$val$</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>
While Loop: Powers of Two

Print powers of 2 that are $\leq 2^n$ for some $n$. Set $n = 6$.

- Increment loop counter $i$ by 1, from 0 to $n$.
- Double $val$ each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>$i$</th>
<th>$val$</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>
Print powers of 2 that are $\leq 2^n$ for some $n$. Set $n = 6$.

- Increment loop counter $i$ by 1, from 0 to $n$.
- Double $val$ each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}
```
While Loop: Powers of Two

Print powers of 2 that are \( \leq 2^n \) for some \( n \). Set \( n = 6 \).

- Increment loop counter \( i \) by 1, from 0 to \( n \).
- Double \( \text{val} \) each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
<th>( i \leq n )</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start Again
While Loop: Powers of Two

Print powers of 2 that are $\leq 2^n$ for some $n$. Set $n = 6$.

- Increment loop counter $i$ by 1, from 0 to $n$.
- Double $val$ each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Print powers of 2 that are $\leq 2^n$ for some $n$. Set $n = 6$.

- Increment loop counter $i$ by 1, from 0 to $n$.
- Double $val$ each time.

```
int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
<th>i $\leq$ n</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>

Start Again
While Loop: Powers of Two

Print powers of 2 that are $\leq 2^n$ for some $n$. Set $n = 6$.

- Increment loop counter $i$ by 1, from 0 to $n$.
- Double $val$ each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}
```

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>true</td>
<td>5 32</td>
</tr>
</tbody>
</table>
While Loop: Powers of Two

Print powers of 2 that are $\leq 2^n$ for some $n$. Set $n = 6$.

- Increment loop counter $i$ by 1, from 0 to $n$.
- Double $val$ each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
<th>i $\leq$ n</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>true</td>
<td>5 32</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start Again
While Loop: Powers of Two

Print powers of 2 that are \( \leq 2^n \) for some \( n \). Set \( n = 6 \).

- Increment loop counter \( i \) by 1, from 0 to \( n \).
- Double \( val \) each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
<th>i ( \leq n )</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>true</td>
<td>5 32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Start Again
While Loop: Powers of Two

Print powers of 2 that are $\leq 2^n$ for some n. Set $n = 6$.

- Increment loop counter i by 1, from 0 to n.
- Double val each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
    System.out.println(i + " " + val);
    i = i + 1;
    val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>true</td>
<td>5 32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>

Start Again
While Loop: Powers of Two

Print powers of 2 that are \(\leq 2^n \) for some \(n \). Set \(n = 6 \).

- Increment loop counter \(i \) by 1, from 0 to \(n \).
- Double \(val \) each time.

```
int i = 0;
int val = 1;
while (i <= n) {
    System.out.println(i + " " + val);
    i = i + 1;
    val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
<th>i (\leq) n</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>true</td>
<td>5 32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>true</td>
<td>6 64</td>
</tr>
</tbody>
</table>

Start Again
While Loop: Powers of Two

Print powers of 2 that are $\leq 2^n$ for some n. Set $n = 6$.

- Increment loop counter i by 1, from 0 to n.
- Double val each time.

```
int i = 0;
int val = 1;
while (i <= n) {
    System.out.println(i + " " + val);
    i = i + 1;
    val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
<th>i \leq n</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>true</td>
<td>5 32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>true</td>
<td>6 64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>false</td>
<td></td>
</tr>
</tbody>
</table>

Start Again
While Loop: Powers of Two

Print powers of 2 that are \(\leq 2^n \) for some \(n \). Set \(n = 6 \).

- Increment loop counter \(i \) by 1, from 0 to \(n \).
- Double \(\text{val} \) each time.

```java
int i = 0;
int val = 1;
while (i <= n) {
    System.out.println(i + " " + val);
    i = i + 1;
    val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
<th>i (\leq n)</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>true</td>
<td>5 32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>true</td>
<td>6 64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>false</td>
<td></td>
</tr>
</tbody>
</table>

Start Again
While Loop: Powers of Two

Print powers of 2 that are \(\leq 2^n \) for some \(n \). Set \(n = 6 \).

- Increment loop counter \(i \) by 1, from 0 to \(n \).
- Double \(val \) each time.

```
int i = 0;
int val = 1;
while (i <= n) {
    System.out.println(i + " " + val);
    i = i + 1;
    val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>val</th>
<th>(i \leq n)</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>true</td>
<td>5 32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>true</td>
<td>6 64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>false</td>
<td></td>
</tr>
</tbody>
</table>

Start Again
public class PowersOfTwo {
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 int i = 0;
 int val = 1;
 while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
 }
 }
}

% java PowersOfTwo 3
0 1
1 2
2 4
3 8
Q: Is anything wrong with the following version of PowersOfTwo?

```java
int i = 0;
int val = 1;
while (i <= n)
    System.out.println(i + " " + val);
    i = i + 1;
    val = 2 * val;
```
While Loop Challenge

Q: Is anything wrong with the following version of PowersOfTwo?

```java
int i = 0;
int val = 1;
while (i <= n)
    System.out.println(i + " " + val);
i = i + 1;
val = 2 * val;
```

A: Need curly braces around statements in while loop. Otherwise, only the first of the statements is executed before returning to while condition; enters an infinite loop, printing 0 1 for ever.

(How to stop an infinite loop? At the Linux command-line, hit Control-c.)
The Increment Operator

```java
int i = 0;
int val = 1;
while (i <= n) {
    System.out.println(i + " " + val);
    i = i + 1;
    val = 2 * val;
}
```
The Increment Operator

int i = 0;
int val = 1;
while (i <= n) {
 System.out.println(i + " " + val);
 i = i + 1;
 val = 2 * val;
}

▶ standard assignment: i = i + 1;
▶ semantically equivalent shorthand: i++;
The Increment Operator

```java
int i = 0;
int val = 1;
while (i <= n) {
    System.out.println(i + " " + val);
    i = i + 1;
    val = 2 * val;
}
```

- standard assignment: `i = i + 1;`
- semantically equivalent shorthand: `i++;`

```java
int i = 0;
int val = 1;
while (i <= n) {
    System.out.println(i + " " + val);
    i++;  
    val = 2 * val;
}
```
Loops (For)
For Loop

The *for* loop is another common structure for repeating things.

- Execute initialization statement.
- Evaluate a boolean expression.
- If true, execute some statements.
- Then execute the increment statement.
- Repeat.
For Loop

The `for` loop is another common structure for repeating things.

- Execute initialization statement.
- Evaluate a boolean expression.
- If true, execute some statements.
- Then execute the increment statement.
- Repeat.

```plaintext
for (init; boolean expression; increment) {
    statement 1;
    statement 2;
}
```

loop body

loop continuation

condition

boolean expression

init

increment
The `for` loop is another common structure for repeating things.

- Execute initialization statement.
- Evaluate a boolean expression.
- If true, execute some statements.
- Then execute the increment statement.
- Repeat.

```java
for (init; boolean expression; increment) {
    statement 1;
    statement 2;
}
```
Anatomy of a For Loop

int val = 1;

for (int i = 0; i <= N; i++) {

System.out.println(i + " " + val);

val = 2 * val;

}
For Loop: Powers of Two

Print the first \(n \) powers of 2. Set \(n = 6 \).

- Double \texttt{val} each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
    System.out.println(i + " " + val);
    val = 2 * val;
}
```
For Loop: Powers of Two

Print the first n powers of 2. Set $n = 6$.

- Double val each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
    System.out.println(i + " " + val);
    val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Start Again
For Loop: Powers of Two

Print the first n powers of 2. Set $n = 6$.

- Double `val` each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
    System.out.println(i + " " + val);
    val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>$i \leq n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>true</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>true</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>true</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>true</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
<td>false</td>
</tr>
</tbody>
</table>

▶ Start Again
For Loop: Powers of Two

Print the first n powers of 2. Set $n = 6$.

- Double `val` each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
    System.out.println(i + " " + val);
    val = 2 * val;
}
```
For Loop: Powers of Two

Print the first n powers of 2. Set $n = 6$.

- Double val each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
    System.out.println(i + " " + val);
    val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>false</td>
<td></td>
</tr>
</tbody>
</table>

Start Again
For Loop: Powers of Two

Print the first n powers of 2. Set $n = 6$.

- Double `val` each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
    System.out.println(i + " " + val);
    val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>i ≤ n</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>false</td>
<td>2</td>
</tr>
</tbody>
</table>
For Loop: Powers of Two

Print the first n powers of 2. Set $n = 6$.

- Double val each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
    System.out.println(i + " " + val);
    val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1</td>
</tr>
</tbody>
</table>
For Loop: Powers of Two

Print the first n powers of 2. Set $n = 6$.

- Double `val` each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
    System.out.println(i + " " + val);
    val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>true</td>
<td>5 32</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>true</td>
<td>6 64</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
<td>false</td>
<td></td>
</tr>
</tbody>
</table>
```

Start Again
Print the first $n$ powers of 2. Set $n = 6$.

- Double `val` each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```
For Loop: Powers of Two

Print the first $n$ powers of 2. Set $n = 6$.

- Double `val` each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " "+ val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>i ≤ n</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For Loop: Powers of Two

Print the first $n$ powers of 2. Set $n = 6$.

- Double $\text{val}$ each time.

```
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>
Print the first $n$ powers of 2. Set $n = 6$.

- Double val each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>false</td>
<td></td>
</tr>
</tbody>
</table>
For Loop: Powers of Two

Print the first $n$ powers of 2. Set $n = 6$.

- Double $val$ each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>i ≤ n</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>false</td>
<td></td>
</tr>
</tbody>
</table>

Start Again
For Loop: Powers of Two

Print the first $n$ powers of 2. Set $n = 6$.

- Double $val$ each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>false</td>
<td></td>
</tr>
</tbody>
</table>

Start Again
For Loop: Powers of Two

Print the first $n$ powers of 2. Set $n = 6$.

- Double $val$ each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>
For Loop: Powers of Two

Print the first $n$ powers of 2. Set $n = 6$.

- Double $val$ each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>true</td>
<td>3 8</td>
</tr>
</tbody>
</table>

Start Again
For Loop: Powers of Two

Print the first $n$ powers of 2. Set $n = 6$.

- Double $val$ each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>i ≤ n</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>false</td>
<td></td>
</tr>
</tbody>
</table>
For Loop: Powers of Two

Print the first $n$ powers of 2. Set $n = 6$.

- Double $val$ each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>false</td>
<td>16 32</td>
</tr>
</tbody>
</table>

Start Again
For Loop: Powers of Two

Print the first $n$ powers of 2. Set $n = 6$.

- Double $val$ each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>

Start Again
For Loop: Powers of Two

Print the first $n$ powers of 2. Set $n = 6$.

- Double $val$ each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>true</td>
<td>4 16</td>
</tr>
</tbody>
</table>

Start Again
For Loop: Powers of Two

Print the first \( n \) powers of 2. Set \( n = 6 \).

- Double \( val \) each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>i ( \leq ) n</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Print the first $n$ powers of 2. Set $n = 6$.

- Double $val$ each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>i $\leq$ n</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For Loop: Powers of Two

Print the first $n$ powers of 2. Set $n = 6$.

- Double $val$ each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>

Start Again
For Loop: Powers of Two

Print the first \( n \) powers of 2. Set \( n = 6 \).

- Double \( \text{val} \) each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>( i \leq n )</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>true</td>
<td>5 32</td>
</tr>
</tbody>
</table>
For Loop: Powers of Two

Print the first $n$ powers of 2. Set $n = 6$.

- Double $val$ each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>i ≤ n</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>true</td>
<td>5 32</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>

Start Again
For Loop: Powers of Two

Print the first $n$ powers of 2. Set $n = 6$.

- Double `val` each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>true</td>
<td>5 32</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start Again
Print the first \( n \) powers of 2. Set \( n = 6 \).

- Double \texttt{val} each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>i (\leq) n</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>true</td>
<td>5 32</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>
Print the first $n$ powers of 2. Set $n = 6$.

- Double $\text{val}$ each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>i &lt;= n</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>true</td>
<td>5 32</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>true</td>
<td>6 64</td>
</tr>
</tbody>
</table>
For Loop: Powers of Two

Print the first $n$ powers of 2. Set $n = 6$.

- Double $val$ each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>true</td>
<td>5 32</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>true</td>
<td>6 64</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
<td>false</td>
<td></td>
</tr>
</tbody>
</table>

Start Again
For Loop: Powers of Two

Print the first $n$ powers of 2. Set $n = 6$.

- Double `val` each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>i ≤ n</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>true</td>
<td>5 32</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>true</td>
<td>6 64</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
<td>false</td>
<td></td>
</tr>
</tbody>
</table>

Start Again
For Loop: Powers of Two

Print the first $n$ powers of 2. Set $n = 6$.

- Double $\text{val}$ each time.

```java
int val = 1;
for (int i = 0; i <= n; i++) {
 System.out.println(i + " " + val);
 val = 2 * val;
}
```

<table>
<thead>
<tr>
<th>val</th>
<th>i</th>
<th>$i \leq n$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>true</td>
<td>0 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>true</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>true</td>
<td>2 4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>true</td>
<td>3 8</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>true</td>
<td>4 16</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>true</td>
<td>5 32</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>true</td>
<td>6 64</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
<td>false</td>
<td></td>
</tr>
</tbody>
</table>

Start Again
When to use While and when to use For?

Rule of thumb

- If you know the iteration count, use `For`.
- If you do not know the iteration count, use `While`.

```
true know iteration count
false

Use For

Use While
```
Loop Examples 1

Print largest power of two that is $\leq n$

```java
int val = 1;
while (val <= n / 2) {
 val = 2 * val;
}
System.out.println(val);
```
Loop Examples 1

Print largest power of two that is \( \leq n \)

```java
int val = 1;
while (val <= n / 2) {
 val = 2 * val;
}
System.out.println(val);
```
Loop Examples 2

Print the result of computing the finite sum
\((1 + 2 + \ldots + n)\)
Loop Examples 2

Print the result of computing the finite sum $(1 + 2 + \ldots + n)$

```java
int sum = 0;
for (int i = 1; i <= n; i++) {
 sum += i;
}
```
Print the result of computing the finite product
$(n! = 1 \times 2 \times \ldots \times n)$
Print the result of computing the finite product 
\((n! = 1 \times 2 \times \ldots \times n)\)

```java
int product = 1;
for (int i = 1; i <= n; i++) {
 product *= i;
}
```
Nested Conditionals
Nested If Statements

How to classify Scottish weather:

<table>
<thead>
<tr>
<th>degrees C</th>
<th>verdict</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; -5</td>
<td>wear a sweater</td>
</tr>
<tr>
<td>-5 to 0</td>
<td>nippy</td>
</tr>
<tr>
<td>1 to 10</td>
<td>normal</td>
</tr>
<tr>
<td>&gt; 10</td>
<td>roastin'</td>
</tr>
</tbody>
</table>

4 mutually exclusive alternatives
Nested If Statements

How to classify Scottish weather:

<table>
<thead>
<tr>
<th>degrees C</th>
<th>verdict</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; -5</td>
<td>wear a sweater</td>
</tr>
<tr>
<td>-5 to 0</td>
<td>nippy</td>
</tr>
<tr>
<td>1 to 10</td>
<td>normal</td>
</tr>
<tr>
<td>&gt; 10</td>
<td>roastin'</td>
</tr>
</tbody>
</table>

4 mutually exclusive alternatives

```java
String verdict;
if (temp < -5) verdict = "wear a sweater";
else {
 if (temp < 1) verdict = "nippy";
 else {
 if (temp < 11) verdict = "normal";
 else verdict = "roastin'";
 }
}
```
Nested If Statements

We don’t necessarily need all those braces.

```java
public class ScottishWeather {
 public static void main(String[] args) {
 String verdict;
 int temp = Integer.parseInt(args[0]);
 if (temp < -5) verdict = "wear a sweater";
 else if (temp < 1) verdict = "nippy";
 else if (temp < 11) verdict = "normal";
 else verdict = "roastin'";
 System.out.println("Verdict: " + verdict);
 }
}
```

Output

```
% java ScottishWeather -1
Verdict: nippy

% java ScottishWeather 1
Verdict: normal
```
Is there anything wrong with the logic of the following code?

```java
String verdict;
int temp = Integer.parseInt(args[0]);
if (temp < -5) verdict = "wear a sweater";
if (temp < 1) verdict = "nippy";
if (temp < 11) verdict = "normal";
if (temp >= 11) verdict = "roastin'";
```
Summary

Control flow:

- Sequence of statements that are actually executed in a program run.
- Conditionals and loops: enable us to choreograph the control flow.

<table>
<thead>
<tr>
<th>Control Flow</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>straight-line</td>
<td>all statements are executed in the order given</td>
<td></td>
</tr>
<tr>
<td>programs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conditionals</td>
<td>certain statements are executed depending on the values of certain variables</td>
<td>if, if-else</td>
</tr>
<tr>
<td>loops</td>
<td>certain statements are executed repeatedly until certain conditions are met</td>
<td>while, for</td>
</tr>
</tbody>
</table>
This Week’s Reading

Java Tutorial
pp68-86, i.e. Chapter 3 *Language Basics* from *Expressions, Statements and Blocks* to the end of the chapter.