
Turtle Graphics and L-systems
Informatics 1 – Functional Programming: Tutorial 6

Due: The tutorial of week 8 (9 – 10 November)

Please attempt the entire worksheet in advance of the tutorial, and bring with you all
work, including (if a computer is involved) printouts of code and test results. Tutorials
cannot function properly unless you do the work in advance.

You may work with others, but you must understand the work; you can’t phone a friend
during the exam.

Assessment is formative, meaning that marks from coursework do not contribute to the
final mark. But coursework is not optional. If you do not do the coursework you are
unlikely to pass the exams.

Attendance at tutorials is obligatory; please let your tutor know if you cannot attend.

Setup

Unfortunately, with the switch to Atom this year we have to do some custom setup for this weeks
exercises to work. To display graphics we use the Haskell package “glut”. This needs to be installed
manually.

1. Open a terminal of your choice

2. Update the “cabal” database by executing the following command:

cabal update

3. Use cabal to install the “glut” package by executing the following command:

cabal install glut

Atom seems to close its REPL every time you call the display function. You will have to reopen
the REPL from the menu.

Turtle graphics

Turtle graphics is a simple way of making line drawings.1 The turtle has a given location on the
canvas and is facing in a given direction. A command describes a sequence of actions to be undertaken
by a turtle, including moving forward a given distance or turning through a given angle.

Turtle commands can be represented in Haskell using an algebraic data type:

1This exercise in based on a similar exercise used at Imperial College. See http://el.media.mit.edu/

logo-foundation/logo/turtle.html for more on turtle graphics.

1



Turn 120

Start

Turn 120

Go 30

Go 30

Go 30

Figure 1: Drawing a triangle with turtle commands

type Distance = Float

type Angle = Float

data Command = Go Distance

| Turn Angle

| Sit

| Command :#: Command

The last line declares an infix data constructor. We have already seen such constructors in Tutorial 5,
where we used them for the binary connectives of propositional logic. While ordinary constructors
must begin with a capital letter, infix constructors must begin with a colon. Here, we have used the
infix constructor :#: to join two commands.

Thus, a command has one of four forms:

• Go d, where d is a distance — move the turtle the given distance in the direction it is facing.
(Note: distances are not expected to be negative.)

• Turn a, where a is an angle — turn the turtle anticlockwise through the given angle.

• Sit — do nothing: leaves the turtle’s position and direction unchanged.

• p :#: q, where p and q are themselves commands — execute the two given commands in
sequence.

For instance, to draw an equilateral triangle with sides of thirty units, we need to order the turtle
to move forward three times, turning 120◦ between moves:

Go 30 :#: Turn 120 :#: Go 30 :#: Turn 120 :#: Go 30

(See Figure 1.)

Viewing paths

You can view a turtle’s path by typing

*Main> display path

2



where path is an expression of type Command. This will open a new graphics window and draw the
turtle graphic. For example,

*Main> display (Go 30 :#: Turn 120 :#: Go 30 :#: Turn 120 :#: Go 30)

draws the triangle described above.

When you close the graphics window, GHCi will exit as well, so you will need to re-load your code
to draw another picture.

Note: to prevent emacs from freezing, you should close the graphics window before restarting GHCi.

Equivalences

Note that :#: is an associative operator with identity Sit. So we have:

p :#: Sit = p

Sit :#: p = p

p :#: (q :#: r) = (p :#: q) :#: r

We can omit parentheses in expressions with :#: because, wherever they are placed, the meaning
remains the same. In this assignment, when we say that two commands are equivalent we mean that
they are the same according to the equalities listed above.

However, to evaluate an expression Haskell has to place parentheses; if you ask it to show a command,
it will also show where it has placed them:

*Main> Sit :#: Sit :#: Sit

Sit :#: (Sit :#: Sit)

Exercises

1. In this first exercise we will explore the equivalence of turtle commands and convert them
into lists and back.

(a) Write a function

split :: Command -> [Command]

that converts a command to a list of individual commands containing no :#: or Sit

elements. For example,

*Main> split (Go 3 :#: Turn 4 :#: Go 7)

[Go 3, Turn 4, Go 7]

(b) Write a function

join :: [Command] -> Command

that converts a list of commands into a single command by joining the elements together.
For example,

*Main> join [Go 3, Turn 4, Go 7]

Go 3 :#: Turn 4 :#: Go 7 :#: Sit

As in all our examples, the result can be any command equivalent to the given command.

(c) Note that two commands are equivalent, in the sense of the equivalence laws above, if
split returns the same result for both.

*Main> split ((Go 3 :#: Turn 4) :#: (Sit :#: Go 7))

[Go 3, Turn 4, Go 7]

*Main> split (((Sit :#: Go 3) :#: Turn 4) :#: Go 7)

[Go 3, Turn 4, Go 7]

3



Write a function equivalent that tests two commands for equivalence. Give both its
type and definition.

(d) Write two QuickCheck properties to test split and join. The first should check that
join (split c) is equivalent to c, where c is an arbitrary command. The second should
check that the list returned by split contains no Sit and (:#:) commands. You need
to give the type as well as the definition of both test properties.

2. Using the above translation from lists, we will write a function to draw regular polygons.

(a) Write a function

copy :: Int -> Command -> Command

which given an integer and a command returns a new command consisting of the given
number of copies of the given command, joined together. Thus, the following two com-
mands should be equivalent:

copy 3 (Go 10 :#: Turn 120)

Go 10 :#: Turn 120 :#: Go 10 :#: Turn 120 :#: Go 10 :#: Turn 120

(b) Using copy, write a function

pentagon :: Distance -> Command

that returns a command which traces a pentagon with sides of a given length. The
following two commands should be equivalent:

pentagon 50

and

Go 50.0 :#: Turn 72.0 :#:

Go 50.0 :#: Turn 72.0 :#:

Go 50.0 :#: Turn 72.0 :#:

Go 50.0 :#: Turn 72.0 :#:

Go 50.0 :#: Turn 72.0

(c) Write a function

polygon :: Distance -> Int -> Command

that returns a command that causes the turtle to trace a path with the given number of
sides, of the specified length. Thus, the following two commands should be equivalent:

polygon 50 5

pentagon 50

Hint : You may need to use the Prelude function fromIntegral to convert an Int to a
Float.

3. Next, we will approximate a spiral, by making our turtle travel increasing (or decreasing)
lengths and turning slightly in between. Our function copy is of no help here, since the
distance our turtle needs to travel changes after each corner it takes. Therefore, your spiral
function will have to be recursive. It’s type signature should be as follows:

spiral :: Distance -> Int -> Distance -> Angle -> Command

Its parameters are

• side, the length of the first segment,

• n, the number of line segments to draw,

4



Figure 2: A spiral (spiral 0.1 1000 0.1 4)

• step, the amount by which the length of successive segments changes, and

• angle, the angle to turn after each segment.

To draw such a spiral, we draw n line segments, each of which makes angle angle with the
previous one; the first should be as long as segment and thereafter each one should be longer
by step (or shorter, if step is negative).

Thus, the following two commands should be equivalent:

spiral 30 4 5 30

Go 30.0 :#: Turn 30.0 :#:

Go 35.0 :#: Turn 30.0 :#:

Go 40.0 :#: Turn 30.0 :#:

Go 45.0 :#: Turn 30.0

Note: your recursion should definitely stop after n steps (the second parameter), but you
will also need to keep in mind that line segments should not become negative in length.

Sample output is shown in Figure 2.

4. Besides the equalities we saw earlier, we might also want to consider the following ones:

Go 0 = Sit

Go d :#: Go e = Go (d+e)

Turn 0 = Sit

Turn a :#: Turn b = Turn (a+b)

So the Sit command is equivalent to either moving or turning by zero, and any sequence of
consecutive moves or turns can be collapsed into a single move or turn (as long as moves have
a non-negative distance!).

Write a function:

optimise :: Command -> Command

which, given a command p, returns a command q that draws the same picture, but has the
following properties:

• q contains no Sit, Go 0 or Turn 0 commands, unless the command is equivalent to Sit.

5



• q contains no adjacent Go commands.

• q contains no adjacent Turn commands.

For example:

*Main> optimise (Go 10 :#: Sit :#: Go 20 :#:

Turn 35 :#: Go 0 :#: Turn 15 :#: Turn (-50))

Go 30.0

You can use split and join to make your task easier. (If your version of join adds a Sit

command, you will need to define a new version which does not.)

Branching and colours

So far we’ve only been able to draw linear paths; we haven’t been able to branch the path in any
way. In the next section, we will make use of two additional command constructors:

data Command = ...

| GrabPen Pen

| Branch Command

where Pen is defined as:

data Pen = Colour Float Float Float

| Inkless

These give two additional forms of path.

• GrabPen p, where p is a pen: causes the turtle to switch to a pen of the given colour. The
following pens are predefined:

white, black, red, green, blue :: Pen

You can create pens with other colours using the Colour constructor, which takes a value
between 0 and 1.0 for each of the red, green and blue components of the colour. The special
Inkless pen makes no output; you can use Inkless to create disjoint pictures with a single
command.

• Branch p, where p is a path: draws the given path and then returns the turtle to direction
and position which it had at the start of the path (rather than leaving it at the end). Pen
changes within a branch have no effect outside the branch.

To see the effect of branching, draw the following path.

let inDirection angle = Branch (Turn angle :#: Go 100) in

join (map inDirection [20,40..360])

Introduction to L-Systems

The Swedish biologist Aristid Lindenmayer developed L-Systems to model the development of
plants.2

An L-System consists of a start pattern and a set of rewrite rules which are recursively applied to
the pattern to produce further increasingly complex patterns. For example, Figure 3 was produced
from the “triangle” L-System:

2For more on L-Systems, see http://en.wikipedia.org/wiki/L-System. A book, The Algorithmic
Beauty of Plants, contains beautiful color illustrations produced by L-Systems; it is available online at
http://algorithmicbotany.org/papers/#abop

6



Figure 3: Triangle L-System output

angle: 90
start: +f

rewrite: f → f+f-f-f+f

Each symbol in the string generated by an L-System represents a path command: here, + and -

represent clockwise and anticlockwise rotation and f represents a forward movement. Which symbols
represent which commands is a matter of convention.

In this system, only the symbol f is rewritten, while the + and - symbols are not. The rewriting
replaces the straight lines with more complex figures.

Here is how to generate a picture with an L-System. Begin with the start pattern. Then apply the
rewrite rule some number of times, replacing the character on the left by the sequence on the right.
For instance, applying the above rule three times gives the following strings in successive steps:

Step Pattern

0 +f

1 +f+f-f-f+f

2 +f+f-f-f+f+f+f-f-f+f-f+f-f-f+f-f+f-f-f+f+f+f-f-f+f

3

+f+f-f-f+f+f+f-f-f+f-f+f-f-f+f-f+f-f-f+f+f+f-f-f+f

+f+f-f-f+f+f+f-f-f+f-f+f-f-f+f-f+f-f-f+f+f+f-f-f+f

-f+f-f-f+f+f+f-f-f+f-f+f-f-f+f-f+f-f-f+f+f+f-f-f+f

-f+f-f-f+f+f+f-f-f+f-f+f-f-f+f-f+f-f-f+f+f+f-f-f+f

+f+f-f-f+f+f+f-f-f+f-f+f-f-f+f-f+f-f-f+f+f+f-f-f+f

Note that you could continue this process for any number of iterations.

After rewriting the string the desired number of times, replace each character that remains by some
drawing commands. In this case, replace f with a move forward (say, by 10 units), replace each +

by a clockwise turn through the given angle, and replace each - by an anticlockwise turn through
the given angle.

Converting L-Systems to functions that return turtle commands is straightforward. For example,
the function corresponding to this “triangle” L-System can be written as follows:

triangle :: Int -> Command

triangle x = p :#: f x

where

f 0 = Go 10

f x = f (x-1) :#: p :#: f (x-1) :#: n :#: f (x-1)

7



Figure 4: Tree L-System output

:#: n :#: f (x-1) :#: p :#: f (x-1)

n = Turn 90

p = Turn (-90)

Study the above definition and compare it with the L-System definition on the previous page. The
above definition is included in LSystem.hs, so you can try it out by typing (for instance):

display (triangle 5)

A couple of things are worth noting. The symbols from the system that are rewritten are imple-
mented as functions that take a “step number” parameter—in this case, only f is rewritten. When
we have taken the desired number of steps, the step number bottoms-out at 0, and here f is just in-
terpreted as a drawing command. The symbols that are not rewritten are implemented as variables,
such as n and p. In general, there will be one definition in the where clause for each letter in the
L-System.

A rewrite rule for the L-System may contain clauses in square brackets, which correspond to branches.
For example, here is a second L-System, that uses two letters and branches.

angle: 45
start: f

rewrite: f → g[-f][+f][gf]

g → gg

Here is the corresponding code (also included in LSystem.hs.

tree :: Int -> Command

tree x = f x

where

f 0 = GrabPen red :#: Go 10

8



f x = g (x-1) :#: Branch (n :#: f (x-1))

:#: Branch (p :#: f (x-1))

:#: Branch (g (x-1) :#: f (x-1))

g 0 = GrabPen blue :#: Go 10

g x = g (x-1) :#: g (x-1)

n = Turn 45

p = Turn (-45)

A picture generated by this definition is shown in Figure 4. Here we use different pens to draw the
segments generated by different symbols: this is not part of the description of the L-system, but it
generates prettier pictures.

Exercises

5. Write a function arrowhead :: Int -> Command implementing the following L-System:

angle: 60
start: f

rewrite: f → g+f+g

g → f-g-f

6. Write a function snowflake :: Int -> Command implementing the following L-System:

angle: 60
start: f--f--f--

rewrite: f → f+f--f+f

7. Write a function hilbert :: Int -> Command implementing the following L-System:

angle: 90
start: l

rewrite: l → +rf-lfl-fr+

r → -lf+rfr+fl-

Note: Not all of the symbols here need to move the turtle. Check your result against
the pictures at http://en.wikipedia.org/wiki/Hilbert_curve and adjust the final values
(e.g. r 0 = ...) until it looks like those.

Optional Material

Just for fun, here are more L-Systems for you to try.

• Peano-Gosper:

angle: 60
start: f

rewrite: f → f+g++g-f--ff-g+

g → -f+gg++g+f--f-g

• Cross

angle: 90
start: f-f-f-f-

rewrite: f → f-f+f+ff-f-f+f

• Branch

angle: 22.5
start: g

rewrite: g → f-[[g]+g]+f[+fg]-g

f → ff

9



• 32-segment

angle: 90
start: F+F+F+F

rewrite: F → -F+F-F-F+F+FF-F+F+FF+F-F-FF+

FF-FF+F+F-FF-F-F+FF-F-F+F+F-F+

10


