
Logic
Informatics 1 – Functional Programming: Tutorial 5

Due: The tutorial of week 7 (2-3 November)

Please attempt the entire worksheet in advance of the tutorial, and bring with you all
work, including (if a computer is involved) printouts of code and test results. Tutorials
cannot function properly unless you do the work in advance.

You may work with others, but you must understand the work; you can’t phone a friend
during the exam.

Assessment is formative, meaning that marks from coursework do not contribute to the
final mark. But coursework is not optional. If you do not do the coursework you are
unlikely to pass the exams.

Attendance at tutorials is obligatory; please let your tutor know if you cannot attend.

Warmup

First you we will write some functions to act on input of the user-defined type Fruit. In the file
tutorial5.hs you will find the following data declaration:

data Fruit = Apple String Bool

| Orange String Int

An expression of type Fruit is either an Apple String Bool or an Orange String Int. We use
a String to indicate the variety of the apple or orange, a Bool to describe whether an apple has a
worm and an Int to count the number of segments in an orange. For example:

Apple "Granny Smith" False -- a Granny Smith apple with no worm

Apple "Braeburn" True -- a Braeburn apple with a worm

Orange "Sanguinello" 10 -- a Sanguinello orange with 10 segments

Exercises

1. Write a function isBloodOrange :: Fruit -> Bool which returns True for blood oranges
and False for apples and other oranges. Blood orange varieties are: Tarocco, Moro and
Sanguinello. For example:

isBloodOrange(Orange "Moro" 12) == True

isBloodOrange(Apple "Granny Smith" True) == False

2. Write a function bloodOrangeSegments :: [Fruit] -> Int which returns the total number
of blood orange segments in a list of fruit.

3. Write a function worms :: [Fruit] -> Int which returns the number of apples that contain
worms.
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Logic

In the rest of this tutorial we will implement propositional logic in Haskell. In the file tutorial5.hs
you will find the following type and data declarations:

type Name = String

data Prop = Var Name

| F

| T

| Not Prop

| Prop :|: Prop

| Prop :&: Prop

The type Prop is a representation of propositional formulas. Propositional variables such as P and
Q can be represented as Var "P" and Var "Q". Furthermore, we have the Boolean constants T

and F for ‘true’ and ‘false’, the unary connective Not for negation (not to be confused with the
function not :: Bool -> Bool), and (infix) binary connectives :|: and :&: for disjunction (∨)
and conjunction (&). Another type defined by tutorial5.hs is:

type Env = [(Name, Bool)]

The type Env is used as an ‘environment’ in which to evaluate a proposition: it is a list of truth
assignments for (the names of) propositional variables. Using these types, tutorial5.hs defines
the following functions:

• satisfiable :: Prop -> Bool checks whether a formula is satisfiable — that is, whether
there is some assignment of truth values to the variables in the formula that will make the
whole formula true.

*Main> satisfiable (Var "P" :&: Not (Var "P"))

False

*Main> satisfiable ((Var "P" :&: Not (Var "Q")) :&: (Var "Q" :|: Var "P"))

True

• eval :: Env -> Prop -> Bool evaluates the given proposition in the given environment (as-
signment of truth values). For example:

*Main> eval [("P", True), ("Q", False)] (Var "P" :|: Var "Q")

True

• showProp :: Prop -> String converts a proposition into a readable string approximating
the mathematical notation. For example:

*Main> showProp (Not (Var "P") :&: Var "Q")

"((~P)&Q)"

• names :: Prop -> Names returns all the variable names used in a proposition. Example:

*Main> names (Not (Var "P") :&: Var "Q")

["P", "Q"]

• envs :: Names -> [Env] generates a list of all the possible truth assignments for the given
list of variables. Example:
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*Main> envs ["P", "Q"]

[[("P",False),("Q",False)],

[("P",False),("Q",True)],

[("P",True),("Q",False)],

[("P",True),("Q",True)] ]

• table :: Prop -> IO () prints out a truth table.

*Main> table ((Var "P" :&: Not (Var "Q")) :&: (Var "Q" :|: Var "P"))

P Q | ((P&(~Q))&(Q|P))

- - | ----------------

F F | F

F T | F

T F | T

T T | F

• fullTable :: Prop -> IO () prints out a truth table that includes the evaluation of the
subformulas of the given proposition. (Note: fullTable uses the function subformulas that
you will define in Exercise 8, so it doesn’t work just yet.)

*Main> fullTable ((Var "P" :&: Not (Var "Q")) :&: (Var "Q" :|: Var "P"))

P Q | ((P&(~Q))&(Q|P)) (P&(~Q)) (~Q) (Q|P)

- - | ---------------- -------- ---- -----

F F | F F T F

F T | F F F T

T F | T T T T

T T | F F F T

Exercises

4. Write the following formulas as Props (call them p1, p2 and p3). Then use satisfiable to
check their satisfiability and table to print their truth tables.

(a) ((P ∨Q) & (P & Q))

(b) ((P ∨Q) & ((¬P ) & (¬Q)))

(c) ((P & (Q ∨R)) & (((¬P ) ∨ (¬Q)) & ((¬P ) ∨ (¬R))))

5. (a) A proposition is a tautology if it is always true, i.e. in every possible environment. Using
names, envs and eval, write a function tautology :: Prop -> Bool which checks
whether the given proposition is a tautology. Test it on the examples from Exercise (4)
and on their negations.

(b) Create two QuickCheck tests to verify that tautology is working correctly. Use the
following facts as the basis for your test properties:

For any property P ,

i. either P is a tautology, or ¬P is satisfiable,

ii. either P is not satisfiable, or ¬P is not a tautology.

Note: be careful to distinguish the negation for Bools (not) from that for Props (Not).

6. We will extend the datatype and functions for propositions in tutorial5.hs to handle the
connectives → (implication) and ↔ (bi-implication, or ‘if and only if’). They will be imple-
mented as the constructors :->: and :<->:. After you have implemented them, the truth
tables for both should be as follows:
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*Main> table (Var "P" :->: Var "Q") *Main> table (Var "P" :<->: Var "Q")

P Q | (P->Q) P Q | (P<->Q)

- - | ------ - - | -------

F F | T F F | T

F T | T F T | F

T F | F T F | F

T T | T T T | T

(a) Find the declaration of the datatype Prop in tutorial5.hs and extend it with the infix
constructors :->: and :<->:.

(b) Find the printer (showProp), evaluator (eval), and name-extractor (names) functions
and extend their definitions to cover the new constructors :->: and :<->:. Test your
definitions by printing out the truth tables above.

(c) Define the following formulas as Props (call them p4, p5, and p6). Check their satisfia-
bility and print their truth tables.

i. ((P → Q) & (P ↔ Q))

ii. ((P → Q) & (P & (¬Q)))

iii. ((P ↔ Q) & ((P & (¬Q)) ∨ ((¬P ) & Q)))

(d) Below the ‘exercises’ section of tutorial5.hs, in the section called ‘for QuickCheck’,
you can find a declaration that starts with:

instance Arbitrary Prop where

This tells QuickCheck how to generate arbitrary Props to conduct its tests. To make
QuickCheck use the new constructors, uncomment the two lines in the middle of the
definition:

-- , liftM2 (:->:) subform subform

-- , liftM2 (:<->:) subform' subform'

Now try your test properties from Exercise (5b) again.

7. Two formulas are equivalent if they always have the same truth values, regardless of the
values of their propositional variables. In other words, formulas are equivalent if in any given
environment they are either both true or both false.

(a) Write a function equivalent :: Prop -> Prop -> Bool that returns True just when
the two propositions are equivalent in this sense. For example:

*Main> equivalent (Var "P" :&: Var "Q") (Not (Not (Var "P") :|: Not (Var "Q")))

True

*Main> equivalent (Var "P") (Var "Q")

False

*Main> equivalent (Var "R" :|: Not (Var "R")) (Var "Q" :|: Not (Var "Q"))

True

You can use names and envs to generate all relevant environments, and use eval to
evaluate the two Props.

(b) Write another version of equivalent, this time by combining the two arguments into a
larger proposition and using tautology or satisfiable to evaluate it.

(c) Write a QuickCheck test property to verify that the two versions of equivalent are
equivalent.

The subformulas of a proposition are defined as follows:

• A propositional letter P or a constant t or f has itself as its only subformula.

4



• A proposition of the form ¬P has as subfomulas itself and all the subformulas of P .

• A proposition of the form P & Q, P ∨Q, P → Q, or P ↔ Q has as subformulas itself and all
the subformulas of P and Q.

The function fullTable :: Prop -> IO (), already defined in tutorial5.hs, prints out a truth
table for a formula, with a column for each of its non-trivial subformulas.

Exercises

8. Add a definition for the function subformulas :: Prop -> [Prop] that returns all of the
subformulas of a formula. For example:

*Main> map showProp (subformulas p2)

["((P|Q)&((~P)&(~Q)))","(P|Q)","P","Q","((~P)&(~Q))","(~P)","(~Q)"]

(We need to use map showProp here in order to convert each proposition into a string; oth-
erwise we could not easily view the results.)

Test out subformulas and fullTable on each of the Props you defined earlier (p1–p6).

5



Optional material

Normal Forms

In this part of the tutorial we will put propositional formulas into several different normal forms.
First, we will deal with negation normal form. As a reminder, a formula is in negation normal
form if it consists of just the connectives ∨ and &, unnegated propositional variables P and negated
propositional variables ¬P , and the constants t and f. Thus, negation is only applied to propositional
variables, and nothing else.

To transform a formula into negation normal form, you might want to use the following equivalences:

¬(P & Q) ⇔ (¬P ) ∨ (¬Q)
¬(P ∨Q) ⇔ (¬P ) & (¬Q)
(P → Q) ⇔ (¬P ) ∨Q
(P ↔ Q) ⇔ (P → Q) & (Q→ P )
¬(¬P ) ⇔ P

Exercises

9. Write a function isNNF to test whether a Prop is in negation normal form.

10. Write a function toNNF that puts an arbitrary Prop into negation normal form. Use the test
properties prop_NNF1 and prop_NNF2 to verify that your function is correct. Hint: don’t be
alarmed if you need many case distinctions.

Next, we will turn a formula into conjunctive normal form. This means the formula is a conjunction
of clauses, and a clause is a disjunction of (possibly negated) propositional variables, called atoms.

You will need to pay special attention to the constants t and f. The Props T and F themselves are
considered to be in conjunction normal form, but otherwise they should not occur in formulas in
normal form. They can be eliminated using the following equivalences:

(P & t) ⇔ (t & P ) ⇔ P
(P & f) ⇔ (f & P ) ⇔ f
(P ∨ t) ⇔ (t ∨ P ) ⇔ t
(P ∨ f) ⇔ (f ∨ P ) ⇔ P

Exercises

11. Write a function isCNF to test if a Prop is in conjunction normal form.

A common way of writing formulas in conjunctive normal form is as a list of lists, where the inner
lists represent the clauses. Thus:

((A ∨B) & ((C ∨D) ∨ E)) & G ⇔ [[A,B],[C,D,E],[G]]

Exercises

12. Think of how the constants t and f can be represented as lists of lists.

Hint: a formula in conjunction normal form is true when all its clauses are true. A clause is
true if any of its atoms is true.

13. Write a function listsToCNF to translate a list of lists of Props (which you may assume to
be variables or negated variables) to a Prop in conjunction normal form.

14. Write a function listsFromCNF to write a formula in conjunction normal form as a list of
lists.

Finally, we will convert an arbitrary Prop to a list of lists. You can use the following distributive
law (check it first using your previous code):
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P ∨ (Q & R) ⇔ (P ∨Q) & (P ∨R)

Or, in a more generalized version:

(P1 & P2 & . . . & Pm) ∨ (Q1 & Q2 & . . . & Qn)

m

(P1 ∨Q1) & (P1 ∨Q2) & (P1 ∨Q3) & . . . & (P1 ∨Qn) &
(P2 ∨Q1) & (P2 ∨Q2) & (P2 ∨Q3) & . . . & (P2 ∨Qn) &

...
(Pm ∨Q1) & (Pm ∨Q2) & (Pm ∨Q3) & . . . & (Pm ∨Qn)

Exercises

15. Write a function toCNFList that turns a Prop into a list of lists of propositional variables
and their negations, representing the formula in conjunction normal form. The output of
toCNFList may contain empty clauses as long as toCNF produces a formula without T nor F
as strict subformulas.

Note: transforming to conjunctive normal form is computationally expensive, especially for formulas
with many bi-implications (↔). Be sure to test your code on small examples first before trying the
test property prop_CNF with QuickCheck.
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