Recursion & the Caesar Cipher

Informatics 1 — Functional Programming: Tutorial 2

Due: The tutorial of week 4 (12-13 Oct.)

Please attempt the entire worksheet in advance of the tutorial, and bring with you all
work, including (if a computer is involved) printouts of code and test results. Tutorials
cannot function properly unless you do the work in advance.

You may work with others, but you must understand the work; you can’t phone a friend
during the exam.

Assessment is formative, meaning that marks from coursework do not contribute to the
final mark. But coursework is not optional. If you do not do the coursework you are
unlikely to pass the exams.

Attendance at tutorials is obligatory; please let your tutor know if you cannot attend.

Recursion

In this first part we revisit several functions from last week’s tutorial. You will be asked to reimple-

ment

To test your new recursive functions you should compare them against your implementation from

them using recursion instead of list comprehensions.

last week and/or against the version from the solutions posted on the course website.

Exercises

1.

(a) Write a function halveEvensRec :: [Int] -> [Int] that returns half of each even

number in the given list. For example,

halveEvensRec [0,2,1,7,8,56,17,18] == [0,1,4,28,9]

Your definition should use recursion, not list comprehension. You may use the functions

div, mod :: Int -> Int -> Int.

(b) To confirm your function is correct, write a test function prop_halveEvens that tests
that halveEvensRec returns the same result as halveEvens from last week. You can
use your implementation of halveEvens from last week, or the solution from the course
website, or both. You might need to change the name of one of them. You can write

more than one test function or combine two properties with &&.
Run your test function(s) using QuickCheck.

(a) Write a function inRangeRec :: Int -> Int -> [Int] -> [Int] to return all num-
bers in the input list within the range given by the first two arguments (inclusive). For
example,

inRangeRec 5 10 [1..15] == [5,6,7,8,9,10]

Your definition should use recursion.

(b) To confirm your function is correct, write a test function prop_inRange that tests that
inRangeRec returns the same result as inRange from last week. You can use your
implementation of inRange from last week, or the solution from the course website, or
both. You might need to change the name of one of them. You can write more than
one test function or combine two properties with &&.

Run your test function(s) using QuickCheck.

3. (a) Write a function countPositivesRec to count the positive numbers in a list (the ones
strictly greater than 0). For example,

countPositivesRec [0,1,-3,-2,8,-1,6] == 3

Your definition should use recursion. You will need a specific library function. A list of
library functions is available from the course website.

(b) To confirm your function is correct, write a test function prop_countPositives that
tests that countPositivesRec returns the same result as countPositives from last
week. You can use your implementation of countPositives from last week, or the
solution from the course website, or both.

Run your test function(s) using QuickCheck.

4. (a) Write a function multDigitsRec :: String -> Int that returns the product of all the
digits in the input string. If there are no digits, your function should return 1. For

example,
multDigitsRec "The time is 4:25" == 40
multDigitsRec "No digits here!" == 1

Your definition should use recursion. You will need a library function to determine if a
character is a digit, one to convert a digit to an integer, and one to do the multiplication.

(b) To confirm your function is correct, write a test function prop-multDigits that tests
that multDigitsRec returns the same result as multDigits from last week. You can
use your implementation of multDigits from last week, or the solution from the course
website, or both.

Run your test function(s) using QuickCheck.

The Caesar Cipher

When we talk about cryptography these days, we usually refer to the encryption of digital messages,
but encryption actually predates the computer by quite a long period. One of the best examples
of early cryptography is the Caesar cipher, named after Julius Caesar because he is believed to
have used it, even if he didn’t actually invent it. The idea is simple: take the message you want to
encrypt and shift all letters by a certain amount between 0 and 26 (called the offset). For example:
encrypting the sentence “THIS IS A BIG SECRET” with shifts of 5, would result in “YMNX NX
F GNL XJHWJY”.

In this exercise you will be implementing a variant of the Caesar cipher. You can use the list of
library functions linked from the course webpage, as well as those in the Appendix of this tutorial
sheet.

Encrypting text

A character-by-character cipher such as a Caesar cipher can be represented by a key, a list of pairs.
Each pair in the list indicates how one letter should be encoded. For example, a cipher for the letters
A-E could be given by the list

[()A)’)C7)’ ()B},)D)), ()C)’)E))’ (7D),)A})’ (’E’,)B))]

Although it’s possible to choose any letter as the ciphertext for any other letter, this tutorial deals
mainly with the type of cipher where we encipher each letter by shifting it the same number of spots
around a circle, for the whole English alphabet.

We wrote a function makeKey :: Int -> [(Char, Char)] for you which will generate such a key
for a given offset. Example:

Tutorial2> makeKey 5
[(’A’)’F7))(’B’)’G’))()C’),HJ),(,D’,,I’),(’E’,,J’),(’F’,,K’),
(,G”,L7)’(’H,"M’)’(’I’,,N’),(7‘]’)’D’))(’K’))P,))(’L’),Q’)’
(,M”,R‘7>’()N,”S’)’()O,’,T’)’(7P,’,U,>’(’Q,’)VJ),(’R’,,)W,),
(’S’,’X’),(’T’,’Y’),(’U’,’Z’),(’V’,’A’),(’W’,’B’),(’X’,’C’),
()Y)’)D))’()Z)’)E))]
The cipher key shows how to encrypt all of the uppercase English letters. There are no duplicates:

each letter appears just once amongst the pairs’ first components (and just once amongst the second
components).

Exercises

5. Write a function
lookUp :: Char -> [(Char, Char)] -> Char

that finds a pair by its first component and returns that pair’s second component. When you
try to look up a character that does not occur in the cipher key, your function should leave
it unchanged. Examples:

Tutorial2> lookUp ’B’ [(’A’, ’F’), (’°B’, ’G’), (°C’, ’H?)]
IG)
Tutorial2> lookUp ’9’° [(’A’, °X’), (°B’, ’Y’), (°C’, °Z”)]
J 9 J
Use list comprehension, then write an equivalent function lookUpRec using recursion. Test
that the two functions are equivalent with a test function prop_lookUp.
6. Write a function
encipher :: Int -> Char -> Char
that encrypts the given single character using the key with the given offset. For example:

Tutorial2> encipher 5 ’C’
IH)
Tutorial2> encipher 7 ’Q’
)X)
7. Text encrypted by a cipher is conventionally written in uppercase and without punctuation.
Write a function
normalize :: String -> String

that converts a string to uppercase, removing all characters other than letters and digits
(remove spaces t00). Example:

Tutorial2> normalize "July 4th!"
"JULY4TH"

8. Write a function
encipherStr :: Int -> String -> String

that normalizes a string and encrypts it, using your functions normalize and encipher.
Example:

Tutorial2> encipherStr 5 "July 4th!"
"0ZQD4YM"

Decoding a message

The Caesar cipher is one of the easiest forms of encryption to break. Unlike most encryption schemes
commonly in use today, it is susceptible to a simple brute-force attack of trying all the possible keys
in succession. The Caesar cipher is a symmetric key cipher: the key has enough information within
it to use it for encryption as well as decryption.

Exercises
9. Decrypting an encoded message is easiest if we transform the key first. Write functions

reverseKey :: [(Char, Char)] -> [(Char, Char)]

to reverse a key. This function should swap each pair in the given list. For example:
Tutorial2> reverseKey [(’A’, °G’), (°B’, ’H’) , (°C’, ’I’)]
(¢’G’, ’A’), CH’, ’B’) , CI’, ’C’)]

First use list comprehension, then write an equivalent function reverseKeyRec using recur-

sion. Check that your two functions are equivalent with a test function prop_reverseKey.

10. Write the functions

decipher :: Int -> Char -> Char
decipherStr :: Int -> String -> String

that decipher a character and a string, respectively, by using the key with the given offset.
Your function should leave digits and spaces unchanged, but remove lowercase letters and
other characters. For example:

Tutorial2> decipherStr 5 "0ZQD4YM"
"JULY4ATH"

Optional Material

Breaking the encryption

One kind of brute-force attack on an encrypted string is to decrypt it using each possible key and then
search for common English letter sequences in the resulting text. If such sequences are discovered
then the key is a candidate for the actual key used to encrypt the plaintext. For example, the words
“the” and “and” occur very frequently in English text: in the Adventures of Sherlock Holmes, “the”
and “and” account for about one in every 12 words, and there is no sequence of more than 150 words
without either “the” or “and”.

The conclusion to draw is that if we try a key on a sufficiently long sequence of text and the result
does not contain any occurrences of “the” or “and” then the key can be discarded as a candidate.

Exercises

11. Write a function contains :: String -> String -> Bool that returns True if the first
string contains the second as a substring (this exercise is the same as the last of the optional
exercises of the previous tutorial).

Tutorial2> contains "Example" "amp"
True
Tutorial2> contains "Example" "xml"
False

12. Write a function

candidates :: String -> [(Int, String)]

that decrypts the input string with each of the 26 possible keys and, when the decrypted text
contains “THE” or “AND”, includes the decryption key and the text in the output list.

Tutorial2> candidates "DGGADBCOOCZYMJHZYVMTOJOCZHVS"
[(5,"YBBVYWXJJXUTHECUTQHOJEJXUCQN") ,
(14, "PSSMPNOAAOLKYVTLKHYFAVAQOLTHE") ,
(21, "ILLFIGHTTHEDROMEDARYTOTHEMAX")]

Strengthened Ceasar

As you have seen in the previous section, the Caesar Cipher is not a very safe encryption method.
In this section, security will be upgraded a little.

Exercises

13.

14.

15.

16.

Write a function splitEachFive :: String -> [String] that splits a string into substrings
of length five. Fill out the last part with copies of the character "X’ to make it as long as the
others.

Tutorial2> splitEachFive "Secret Message"
["Secre", "t Mes", "sageX"]

The library function transpose switches the rows and columns of a list of lists:

Tutorial2> transpose ["123","abc","ABC"]
["1aA" , "OpB" , "3CC"]

Tutorial2> transpose ["1","22","333"]
[||123|| , ||23|| , ||3||:]

If the rows in a list of lists are of the same length, transposing it twice returns the original
one. Use your splitEachFive function to write a quickCheck property to test this. Also,
show with an example that this is not always the case when the rows are of different lengths.

Write a function encrypt :: Int -> String -> String that encrypts a string by first ap-
plying the Caesar Cipher, then splitting it into pieces of length five, transposing, and putting
the pieces together as a single string.

Write a function to decrypt messages encrypted in the way above.

Hint: The last action of the previous function is to put the transposed list of strings back
together. You will need a helper function to undo this (it is not splitEachFive).

Appendix: Utility function reference

Note: for most of these functions you will need to import Data.Char or Data.List.
(This has already been done for you in tutorial2.hs.)

ord :: Char -> Int
Return the numerical code corresponding to a character
Examples: ord ’A’ == 65 ord 1’ == 49

chr :: Int -> Char
Return the character corresponding to a numerical code

Examples: chr 65 == ’A’ chr 49 == ’1°
mod :: Int -> Int -> Int

Return the remainder after the first argument is divided by the second
Examples: mod 10 3 == mod 25 5 == 0

isAlpha :: Char -> Bool
Return True if the argument is an alphabetic character
Examples: isAlpha ’3’ == False isAlpha ’x’ == True

isDigit :: Char -> Bool
Return True if the argument is a numeric character
Examples: isDigit ’3’ == True isDigit ’x’ == False

isUpper :: Char -> Bool
Return True if the argument is an uppercase letter

Examples: isUpper ’x’ == False isUpper ’X’ == True
isLower :: Char -> Bool

Return True if the argument is a lowercase letter

Examples: isLower ’3’ == False isLower ’x’ == True

toUpper :: Char -> Char
If the argument is an alphabetic character, convert it to upper case
Examples: toUpper ’x’ == ’X’ toUpper ’3’ == ’3’

isPrefix0f :: String -> String -> Bool
Return True if the first list argument is a prefix of the second
Examples: isPrefix "has" "haskell" == True isPrefix "has" "handle" == False

error :: String -> a
Signal an error
Examples: error ”"Function only defined on positive numbers!”

