
Comprehensions
Informatics 1 – Functional Programming: Tutorial 1

Due: The tutorial of week 3 (5-6th Oct.)

Please attempt the entire worksheet in advance of the tutorial, and bring with you all
work, including (if a computer is involved) printouts of code and test results. Tutorials
cannot function properly unless you do the work in advance.

You may work with others, but you must understand the work; you can’t phone a friend
during the exam.

Assessment is formative, meaning that marks from coursework do not contribute to the
final mark. But coursework is not optional. If you do not do the coursework you are
unlikely to pass the exams.

Attendance at tutorials is obligatory; please let your tutor know if you cannot attend.

Comprehension

In these problems you’ll be asked to define several functions using list comprehensions.

You will also write and run some QuickCheck tests to test some basic properties.

You will find the skeletons of the functions in the file tutorial1.hs, which came packaged with this
document.

Note: for these exercises you may not use any library functions other than the ones stated. If you
have an additional solution using other library functions, you’re welcome to discuss it during the
tutorial. A list of common library functions can be found on the course website.

Exercises

1. (a) Write a function halveEvens :: [Int] -> [Int] that returns half of each even number
in the list. For example,

halveEvens [0,2,1,7,8,56,17,18] == [0,1,4,28,9]

Your definition should use a list comprehension. You may use the functions div, mod

:: Int -> Int -> Int.

(b) Write a test function prop_halveEvens to check that your halveEvens function gives
the same results as the reference implementation halveEvensReference.

The halveEvensReference function is predefined in the exercise file. Do not try to
understand how it works, it is written in a deliberately obtuse style.

2. Write a function inRange :: Int -> Int -> [Int] -> [Int] to return all numbers in the
input list within the range given by the first two arguments (inclusive). For example,

inRange 5 10 [1..15] == [5,6,7,8,9,10]

1



Your definition should use a list comprehension.

Do not forget to test your function on a couple of examples.

3. (a) Write a function countPositives to count the positive numbers in a list (the ones
strictly greater than 0). For example,

countPositives [0,1,-3,-2,8,-1,6] == 3

Your definition should use a list comprehension. You will need a specific library function.
A list of library functions is available from the course website.

(b) Why do you think it’s not possible to write countPositives using only list comprehen-
sion, without library functions?

4. (a) Professor Pennypincher will not buy anything if he has to pay more than £199.00. But,
as a member of the Generous Teachers Society, he gets a 10% discount on anything he
buys. Write a function pennypincher that takes a list of prices and returns the total
amount that Professor Pennypincher would have to pay, if he bought everything that
was cheap enough for him. For example,

pennypincher [4500, 19900, 22000, 39900] == 41760

Prices should be represented in Pence, not Pounds, by integers. To deduct 10% off
them, you will need to convert them into floats first, using the function fromIntegral.
To convert back to ints, you can use the function round, which rounds to the nearest
integer. You can write a helper function discount :: Int -> Int to do this.

Your solution should use a list comprehension, and you may use a library function to do
the additions for you.

(b) To confirm that Professor Pennypincher actually saves money, write a test function
prop_pennypincher. This should check that the result of pennypincher is less or equal
to the sum of the positive numbers in the input.

5. (a) Write a function multDigits :: String -> Int that returns the product of all the
digits in the input string. If there are no digits, your function should return 1. For
example,

multDigits "The time is 4:25" == 40

multDigits "No digits here!" == 1

Your definition should use a list comprehension. You’ll need a library function to de-
termine if a character is a digit, one to convert a digit to an integer, and one to do the
multiplication.

(b) Write a function countDigits :: String -> Int that returns the number of digits
in the input string.

(c) Because 9 is the largest digit, the number returned by multDigits on any given input
should be less than or equal to 9x where x is the number of digits as returned by
countDigits. Write and execute a QuickCheck property prop multDigits to confirm.
The exponentation operator is (^), e.g. 9 ^ 3 = 93 = 729.

6. (a) Write a function capitalise :: String -> String which, given a word, capitalises
it. That means that the first character should be made uppercase and any other letters
should be made lowercase. For example,

capitalise "edINBurgH" == "Edinburgh"

Your definition should use a list comprehension and library functions toUpper and
toLower that change the case of a character.

7. (a) Using the function capitalise from the previous problem, write a function

title :: [String] -> [String]

2



which, given a list of words, capitalises them as a title should be capitalised. The
proper capitalisation of a title (for our purposes) is as follows: The first word should be
capitalised. Any other word should be capitalised if it is at least four letters long. For
example,

title ["tHe", "sOunD", "ANd", "thE", "FuRY"]

== ["The", "Sound", "and", "the", "Fury"]

Your function should use a list comprehension. Besides the capitalise function, you
will probably need some other auxiliary functions. You may use library functions that
change the case of a character and the function length.

8. (a) Write a function sign :: Int -> Char that takes an integer and returns the character

• ’+’ if the integer is between 1 and 9 (inclusive),

• ’0’ if the integer is 0,

• ’-’ if the integer is between -1 and -9 (inclusive),

and indicates an error otherwise (using the error function).

(b) Write a function signs :: [Int] -> String that takes a list of integers and returns
the sign of each integer between -9 and 9 (inclusive), ignoring any number out of that
range. For example, signs [5, 10, -5, 0] should return "+-0". You might want to
use the sign function defined earlier.

9. (a) Write a function score :: Char -> Int that converts a character to its score. Each
letter starts with a score of one; one is added to the score of a character if it is a vowel
(a, e, i, o, u) and one is added to the score of a character if it is upper case; a character
that is not a letter scores zero. For example,

score ’A’ = 3

score ’a’ = 2

score ’B’ = 2

score ’b’ = 1

score ’.’ = 0

(b) Write a function totalScore :: String -> Int that given a string returns the prod-
uct of the score of every letter in the string, ignoring any character that is not a letter.
For example, totalScore "aBc4E" should return 12. The product function might come
in handy.

(c) Write a test function prop totalScore positive that checks that totalScore always
returns a number greater than or equal to 1.

3



Optional Material

Exercises

10. (a) Dame Curious is a crossword enthusiast. She has a long list of words that might appear
in a crossword puzzle, but she has trouble finding the ones that fit a slot. Write a
function

crosswordFind :: Char -> Int -> Int -> [String] -> [String]

to help her. The expression

crosswordFind letter inPosition len words

should return all the items from words which (a) are of the given length and (b) have
letter in the position inPosition. For example, if Curious is looking for seven-letter
words that have ’k’ in position 1, she can evaluate the expression:

crosswordFind ’k’ 1 7 ["funky", "fabulous", "kite", "icky", "ukelele"]

which returns ["ukelele"]. (Remember that we start counting with 0, so position 1 is
the second position of a string.)

Your definition should use a list comprehension. You may also use a library function
which returns the nth element of a list, for argument n, and the function length.

11. (a) Write a function search :: String -> Char -> [Int] that returns the positions of
all occurrences of the second argument in the first. For example

search "Bookshop" ’o’ == [1,2,6]

search "senselessness’s" ’s’ == [0,3,7,8,11,12,14]

Your definition should use a list comprehension. You may use the function zip :: [a]

-> [b] -> [(a,b)], the function length :: [a] -> Int, and the term forms [m..n]
and [m..].

(b) Try to come up with a property of search that should always hold. Write a QuickCheck
test to confirm it does.

12. (a) Write a function contains that takes two strings and returns True if the first contains
the second as a substring. You can use the library function isPrefixOf, which returns
True if the second string begins with the first string, and any list function on page 127
of Thompson; see the course webpage for a copy if you are using Lipovaca. For example,

contains "United Kingdom" "King" == True

contains "Appleton" "peon" == False

contains "" "" == True

Your definition should use a list comprehension. A hint: you can use the library function
drop to create a list of all possible suffixes (“last parts”) of a string.

(b) Write a QuickCheck property prop_contains to test your function.

You could test positive or negative results (or both) with specifically crafted strings
where you know that one does contain the other, or not. Or you could test that longer
strings are never contained in shorter strings. Or anything else interesting you can come
up with.

4


