Infl1-FP Revision Tutorial 8

General revision

Week of 7 — 11 Dec 2015

In this tutorial we will quickly go through all of the major topics of the course.
Since this is very general revision, you should not have any trouble doing any
of these exercises. If you do find any of them challenging, perhaps you should
focus on revising that area.

1. Functions
Define a function £1 that given two numbers will tell us whether the first is

divisible by the second. You should provide an appropriate type declaration for
this function.

2. Recursion
Define a recursive function £2 that given two lists of numbers will give the

product of all the numbers in the first list that are divisible by the corresponding
number in the second list.

£2 [21, 34, 22, 9] [2, 2, 4, 3] == 34 * 9 == 306

Your function should give a meaningful error if the lengths of the lists do not
match.

You should also have an idea how you would approach this problem using both
list comprehension and higher order functions.

3. Characters and Strings

Write a function £3 that given a string containing only letters and spaces, will
return a list of the words in the string that begin with an uppercase letter. For
example:

£3 "this is a String of Words" == ["String","Words"]

A library function might come in handy, but you don’t need to use it.



4. List Comprehensions

Given two lists of integers, use list comprehension to define a function £4 that
returns a list of all the possible sums of a number from the first list and a number
from the second list:

f4 [1, 2] [3, 4] == [4,5,5,6]
f4 [1,2] [5,6,9,2] == [6,7,10,3,7,8,11,4]

5. List Processing with Higher Order Functions

Using foldr give definitions of map’ and filter’ that behave like their prelude
counterparts.

Also think how you would solve 2, 3 and 4 above with higher order functions.

6. Algebraic Data Types

Write a definition for the type TwoTree a where a branch can have 0, 1 or 2
children, together with a node label of type a.

Write a function treeFold :: (a -> b -> b) -> b -> TwoTree a -> b,
that will work similarly like foldr but for your TwoTree type. That is, the
function should go through all the nodes of the tree and apply the function
passed to treeFold on all of these (the order in which you go through them
isn’t specified).

7. Type classes

Create a type class called StructurallySimilar which defines a function
similar :: a -> a -> Bool that checks if the two arguments have the
same structure.

Make your TwoTree an instance of this class. Two TwoTrees are similar iff
each node has the same number of children as the corresponding node in the
other tree.

Hint: Lists would be similar iff they had the same number of elements. We can
do this by:

instance StructurallySimilar [a] where
similar 11 12 = length 11 == length 12

Then also make TwoTree an instance of the Show class.



8. Testing

Import Test.QuickCheck into your file. Write tests that verify if the following
versions of the well known library functions work correctly (if possible, try to
think of tests other then just checking if they behave identically to their prelude
counterparts). Fix any bugs that you find:

0
x * product’ xs

product’ []
product’ (x:xs)

x <y =not (x>y)

9. Modules

Package the code you have written in 6 and 7 into a module, and check that it
still works.

by Jakub Hampl, 7 Dec 2012



