
Inf1-FP Revision Tutorial 7

Algebraic types

Week of 30 Nov – 4 Dec 2015

All of the following questions are taken directly from past exam papers. To check your
solutions write tests that they behave according to the examples given, plus any QuickCheck
tests you can think of. You will need to start from the template file, which contains the code
required to drive QuickCheck on the data types used in these questions.

1. The following data type represents expressions built from variables, sums, and prod-
ucts.

data Expr = Var String

| Expr :*: Expr

| Expr :+: Expr

(a) Write two functions isTerm, isNorm :: Expr -> Bool that return true when
the given expression is a term or is normal, respectively. We say that an expression
is a term if it is a product of variables, that is, it is a variable or the product of
two expressions that are terms. We say that an expression is normal if it is a sum
of terms, that is, if it is a term or the sum of two expressions that are normal.
For example,

isTerm (Var "x") = True

isTerm ((Var "x" :*: Var "y") :*: Var "z") = True

isTerm ((Var "x" :*: Var "y") :+: Var "z") = False

isTerm (Var "x" :*: (Var "y" :+: Var "z")) = False

isNorm (Var "x") = True

isNorm (Var "x" :*: Var "y" :*: Var "z") = True

isNorm ((Var "x" :*: Var "y") :+: Var "z") = True

isNorm (Var "x" :*: (Var "y" :+: Var "z")) = False

isNorm ((Var "x" :*: Var "y") :+: (Var "x" :*: Var "z")) = True

isNorm ((Var "u" :+: Var "v") :*: (Var "x" :+: Var "y")) = False

isNorm (((Var "u" :*: Var "x") :+: (Var "u" :*: Var "y")) :+:

((Var "v" :*: Var "x") :+: (Var "v" :*: Var "y"))) = True

(b) Write a function norm :: Expr -> Expr that converts an expression to an equiv-
alent expression in normal form. An expression not in normal form may be con-
verted to normal form by repeated application of the distributive laws,

(a + b)× c = (a× c) + (b× c)
a× (b + c) = (a× b) + (a× c)

1

For example,

norm (Var "x")

= (Var "x")

norm ((Var "x" :*: Var "y") :*: Var "z")

= ((Var "x" :*: Var "y") :*: Var "z")

norm ((Var "x" :*: Var "y") :+: Var "z")

= ((Var "x" :*: Var "y") :+: Var "z")

norm (Var "x" :*: (Var "y" :+: Var "z"))

= ((Var "x" :*: Var "y") :+: (Var "x" :*: Var "z"))

norm ((Var "u" :+: Var "v") :*: (Var "x" :+: Var "y"))

= (((Var "u" :*: Var "x") :+: (Var "u" :*: Var "y")) :+:

((Var "v" :*: Var "x") :+: (Var "v" :*: Var "y")))

2. (a) A scalar is a single integer, and a vector is a pair of integers.

type Scalar = Int

type Vector = (Int,Int)

Write functions

add :: Vector -> Vector -> Vector

mul :: Scalar -> Vector -> Vector

that add two vectors by adding corresponding components of the vectors, and
multiply a scalar and a vector by multiplying each component of the vector by
the scalar. For example,

add (1,2) (3,4) == (4,6)

mul 2 (3,4) == (6,8)

(b) The following data type represents terms that compute vectors. A term is a vector
consisting of two scalars, the sum of two terms, or the multiplication of a scalar
by a term.

data Term = Vec Scalar Scalar

| Add Term Term

| Mul Scalar Term

Write a function eva :: Term -> Vector that takes a term and computes the
corresponding vector. For example,

eva (Vec 1 2) == (1,2)

eva (Add (Vec 1 2) (Vec 3 4)) == (4,6)

eva (Mul 2 (Vec 3 4)) == (6,8)

eva (Mul 2 (Add (Vec 1 2) (Vec 3 4))) == (8,12)

eva (Add (Mul 2 (Vec 1 2)) (Mul 2 (Vec 3 4))) == (8,12)

2

(c) Write a function sho :: Term -> String that converts a term to a string. Vec-
tors should be printed as a pair of integers in parentheses, sums and products
should be written infix surrounded by parentheses. For example,

sho (Vec 1 2) == "(1,2)"

sho (Add (Vec 1 2) (Vec 3 4)) == "((1,2)+(3,4))"

sho (Mul 2 (Vec 3 4)) == "(2*(3,4))"

sho (Mul 2 (Add (Vec 1 2) (Vec 3 4))) == "(2*((1,2)+(3,4)))"

sho (Add (Mul 2 (Vec 1 2)) (Mul 2 (Vec 3 4)))

== "((2*(1,2))+(2*(3,4)))"

You may use the show function on scalars in your definition, but not the show

function on terms that is provided in the template file for use by QuickCheck.

3. We introduce a data type to represent collections of points in a grid:

type Point = (Int,Int)

data Points = Rectangle Point Point

| Union Points Points

| Difference Points Points

The grid starts with (0,0) in the top left corner. The first coordinate of a point
represents the horizontal distance from the origin, the second represents the vertical
distance.

The constructor Rectangle selects all points in a rectangular area. For example,

Rectangle (0,0) (2,1)

gives the top left and bottom right corners of a rectangle, and represents all the points
in between (inclusive):

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

Secondly, Union combines two collections of points; for example,

Union (Rectangle (0,0) (1,1)) (Rectangle (1,0) (2,1))

represents the same collection of points as above. Finally, the constructor Difference
selects those points that are in the first collection but not in the second. For example:

Difference (Rectangle (0,0) (2,2)) (Rectangle (0,2) (3,2))

again gives the same collection of points as above.

3

(a) Write a function

inPoints :: Point -> Points -> Bool

to determine whether a point is in a given collection. For example:

inPoints (1,1) (Rectangle (0,0) (2,1)) == True

inPoints (3,4) (Rectangle (0,0) (2,1)) == False

inPoints (1,1) (Union (Rectangle (0,0) (0,1))

(Rectangle (1,0) (1,1))) == True

inPoints (2,2) (Union (Rectangle (0,0) (0,1))

(Rectangle (1,0) (1,1))) == False

inPoints (1,1) (Difference (Rectangle (0,0) (1,1))

(Rectangle (0,0) (0,1))) == True

inPoints (0,0) (Difference (Rectangle (0,0) (1,1))

(Rectangle (0,0) (0,1))) == False

(b) Write a function

showPoints :: Point -> Points -> [String]

to show a collection of points as a list of strings, representing the points on a
grid. The grid starts with (0,0) in the top left corner, while the bottom right
corner, which determines the size of the grid, is given by the first argument to the
function showPoints. The strings in the list that is returned should correspond
to the rows (not the columns) of the grid. Use an asterisk (’*’) to represent a
point, and use blank space (’ ’) to fill out the lines. For example:

showPoints (4,2) (Rectangle (1,1) (3,3)) ==

[" ",

" *** ",

" *** "]

showPoints (5,2) (Difference (Rectangle (0,0) (4,1))

(Rectangle (2,0) (2,2))) ==

["** ** ",

"** ** ",

" "]

4

