Infl1-FP Revision Tutorial 5

Characters and Strings

Week of 9-13 Nov 2015

All of the following questions are taken directly from past exam papers. To check your
solutions write tests that they behave according to the examples given, plus QuickCheck
tests to test correctness.

1.

(a)

Write a function £1 :: [String] -> String to concatenate every word in a list
that begins with an upper case letter. For example,

f1 ["This","Is","not","A","non","Test"] = "ThisIsATest"

f1 ["noThing","beGins","uPPER"] = ""

f1 ["Non-words","like", "42", "get","Dropped"] = "Non-wordsDropped"
fl [IlAnll s IlEmptyll s Ilwordll s nn R llgetsll s Ildroppedll] = IlAnEmptywordll

Use basic functions, list comprehension, and library functions, but not recursion.

Write a second function g1 :: [String] -> String that behaves like £1, this
time using basic functions, recursion, and the library function to append two lists,
but not list comprehension or other library functions.

Write a function £2 :: String -> Bool to verify that every vowel in a string
is uppercase. In English, the following characters are the vowels: ’a’, ’A’, ’e’,
’E’,’i°,°17,°0%,°0’, >u’, and *U’. The function should return True for strings
that have no vowels at all. For example,

f2 "ALL CAPS" == True

f2 "r3cURsIOn" == True
£f2 [] == True

f2 "normal text" == False

Your definition may use basic functions, list comprehension, and library functions,
but not recursion.

Write a second function g2 :: String -> Bool that behaves like £2, this time
using basic functions and recursion, but not list comprehension or other library
functions.

Write a third function h2 :: String -> Bool that also behaves like £2, this time
using one or more of the following higher-order library functions:

map :: (a -> b) -> [a] -> [b]
filter :: (a -> Bool) -> [a] —> [a]
foldr :: (a->b ->Db) > b -> [a] > Db



You may also use basic functions, but not list comprehension, other library func-
tions, or recursion.

Write a function £3 :: String -> Bool to verify that all the digits in a string
are equal to or greater than 5. For example,

£3 "normal text" == True
£3 "number 75" == True

£f3 "" == True

£f3 "17 is a prime" == False

Your definition may use basic functions, list comprehension, and library functions,
but not recursion.

Write a second function g3 :: String -> Bool that behaves like £3, this time
using basic functions and recursion, but not list comprehension or other library
functions.

Write a third function h3 :: String -> Bool that also behaves like £3, this time
using one or more of the following higher-order library functions:

map :: (a -> b) —> [a] —> [b]
filter :: (a -> Bool) -> [a] -> [a]
foldr :: (a->b ->Db) -=>b -> [a] > Db

You may also use basic functions, but not list comprehension, other library func-
tions, or recursion.

Write a function £4 :: String -> Bool to verify that every punctuation char-
acter in a string is a space. A character is punctuation if it is not a letter or
a digit. The function should return True for strings that have no punctuation
characters at all. For example,

f4 "Just two spaces" == True

f4 "No other punctuation, period." == False
f4 "No exclamations!" == False

f4 "What the Q#$!?" == False

f4 "13tt3rs and dlglts Ok" == True

f4 "NoSpacesAtAl1l0K" == True

f4 "" == True

Your definition may use basic functions, list comprehension, and library functions,
but not recursion.

Write a second function g4 :: String -> Bool that behaves like £4, this time
using basic functions and recursion, but not list comprehension or other library
functions.

Write a third function h4 :: String -> Bool that also behaves like £4, this time
using one or more of the following higher-order library functions:



map :: (a -> b) —> [a] —> [b]
filter :: (a -> Bool) -> [a] -> [a]
foldr :: (a =>b ->Db) -=>b -> [a] > b

You may also use basic functions, but not list comprehension, other library func-
tions, or recursion.

Write a function £5 :: String -> Bool that takes a string, and returns True if
every digit in the string is even. Any characters in the string that are not digits
should be ignored. For example,

£f5 "246" == True

f5 "2467" == False
£5 "x4y2z" == True
f5 "abcl12" == False

Your definition may use basic functions, list comprehension, and library functions,
but not recursion.

Write a second function g5 :: String -> Bool that behaves like £5, this time
using basic functions and recursion, but not list comprehension or other library
functions.

Write a third function h5 :: String -> Bool that also behaves like £5, this time
using one or more of the following higher-order library functions:

map :: (a -> b) -> [a] -> [b]
filter :: (a -> Bool) -> [a] -> [a]
foldr :: (a->b ->b) >b > [a] > Db

You may also use basic functions, but not list comprehension, other library func-
tions, or recursion.



