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INDUCTIVE PROOFS 
ABOUT HASKELL PROGRAMS 



Recall:  Proofs by simple calculation 

• Some proofs are very easy and can be done by: 

– unfolding definitions  

– using lemmas or facts we already know 

– folding definitions back up 

• Eg: 

Theorem:  easy a b c == easy a c b 
 
Proof: 
 
easy a b c 
 
=  a * (b + c) (by unfold) 
 
=  a * (c + b) (by commutativity of add) 
 
=  easy a c b (by fold) 

Definition: 
easy x y z = x * (y + z) 

given this 

we do this proof 



Another Theorem 

Theorem:  For all finite Haskell lists xs and ys,  
    length(xs ++ ys) = length xs + length ys 
 
Proof attempt: 
 

[ ] ++ ys       = ys 
(x:xs) ++ ys = x:(xs ++ ys) 

length [ ]       = 0 
length (x:xs) = 1 + length xs 



Another Theorem 

Theorem:  For all finite Haskell lists xs and ys,  
    length(xs ++ ys) = length xs + length ys 
 
Proof attempt: 
case: xs = [ ] 
 
 
 
 
 
case: xs = x:xs’ 
 
 

[ ] ++ ys       = ys 
(x:xs) ++ ys = x:(xs ++ ys) 

length [ ]       = 0 
length (x:xs) = 1 + length xs 



Another Theorem 

Theorem:  For all finite Haskell lists xs and ys,  
    length(xs ++ ys) = length xs + length ys 
 
Proof attempt: 
case: xs = [ ] 
   length ( [ ] ++ ys )   (LHS of theorem equation) 
 
 
 
 
case: xs = x:xs’ 
 
 

[ ] ++ ys       = ys 
(x:xs) ++ ys = x:(xs ++ ys) 

length [ ]       = 0 
length (x:xs) = 1 + length xs 



Another Theorem 

Theorem:  For all finite Haskell lists xs and ys,  
    length(xs ++ ys) = length xs + length ys 
 
Proof attempt: 
case: xs = [ ] 
   length ( [ ] ++ ys )   (LHS of theorem equation) 
= length ( ys )   (unfold ++) 
 
 
 
case: xs = x:xs’ 
 
 

[ ] ++ ys       = ys 
(x:xs) ++ ys = x:(xs ++ ys) 

length [ ]       = 0 
length (x:xs) = 1 + length xs 



Another Theorem 

Theorem:  For all finite Haskell lists xs and ys,  
    length(xs ++ ys) = length xs + length ys 
 
Proof attempt: 
case: xs = [ ] 
   length ( [ ] ++ ys )   (LHS of theorem equation) 
= length ( ys )   (unfold ++) 
= 0 + length ( ys )   (simple arithmetic) 
 
 
case: xs = x:xs’ 
 
 

[ ] ++ ys       = ys 
(x:xs) ++ ys = x:(xs ++ ys) 

length [ ]       = 0 
length (x:xs) = 1 + length xs 



Another Theorem 

Theorem:  For all finite Haskell lists xs and ys,  
    length(xs ++ ys) = length xs + length ys 
 
Proof attempt: 
case: xs = [ ] 
   length ( [ ] ++ ys )   (LHS of theorem equation) 
= length ( ys )   (unfold ++) 
= 0 + length ( ys )   (simple arithmetic) 
= length [ ] + length ( ys )  (fold length -- done, we have RHS) 
 
case: xs = x:xs’ 
 
 

[ ] ++ ys       = ys 
(x:xs) ++ ys = x:(xs ++ ys) 

length [ ]       = 0 
length (x:xs) = 1 + length xs 



Another Theorem 

Theorem:  For all finite Haskell lists xs and ys,  
    length(xs ++ ys) = length xs + length ys 
 
Proof attempt: 
case: xs = [ ] 
   length ( [ ] ++ ys )   (LHS of theorem equation) 
= length ( ys )   (unfold ++) 
= 0 + length ( ys )   (simple arithmetic) 
= length [ ] + length ( ys )  (fold length) 
 
case: xs = x:xs’ 
 
 

[ ] ++ ys       = ys 
(x:xs) ++ ys = x:(xs ++ ys) 

length [ ]       = 0 
length (x:xs) = 1 + length xs 



Another Theorem 

Theorem:  For all finite Haskell lists xs and ys,  
    length(xs ++ ys) = length xs + length ys 
 
Proof attempt: 
case: xs = [ ] 
   length ( [ ] ++ ys )   (LHS of theorem equation) 
= length ( ys )   (unfold ++) 
= 0 + length ( ys )   (simple arithmetic) 
= length [ ] + length ( ys )  (fold length) 
 
case: xs = x:xs’ 
   length ((x:xs’) ++ ys)  (LHS of theorem equation) 
= length (x:(xs’ ++ ys))  (unfold ++) 
= 1 + length (xs’ ++ ys))  (unfold length) 

[ ] ++ ys       = ys 
(x:xs) ++ ys = x:(xs ++ ys) 

length [ ]       = 0 
length (x:xs) = 1 + length xs 



Another Theorem 

Theorem:  For all finite Haskell lists xs and ys,  
    length(xs ++ ys) = length xs + length ys 
 
Proof attempt: 
case: xs = [ ] 
   length ( [ ] ++ ys )   (LHS of theorem equation) 
= length ( ys )   (unfold ++) 
= 0 + length ( ys )   (simple arithmetic) 
= length [ ] + length ( ys )  (fold length) 
 
case: xs = x:xs’ 
   length ((x:xs’) ++ ys)  (LHS of theorem equation) 
= length (x:(xs’ ++ ys))  (unfold ++) 
= 1 + length (xs’ ++ ys))  (unfold length) 
    subcase xs’ = [ ] 
         
    subcase xs’ = x’:xs’’ [ ] ++ ys       = ys 

(x:xs) ++ ys = x:(xs ++ ys) 

length [ ]       = 0 
length (x:xs) = 1 + length xs 



Another Theorem 

Theorem:  For all finite Haskell lists xs and ys,  
    length(xs ++ ys) = length xs + length ys 
 
Proof attempt: 
case: xs = [ ] 
   length ( [ ] ++ ys )   (LHS of theorem equation) 
= length ( ys )   (unfold ++) 
= 0 + length ( ys )   (simple arithmetic) 
= length [ ] + length ( ys )  (fold length) 
 
case: xs = x:xs’ 
   length ((x:xs’) ++ ys)  (LHS of theorem equation) 
= length (x:(xs’ ++ ys))  (unfold ++) 
= 1 + length (xs’ ++ ys))  (unfold length) 
    subcase xs’ = [ ] 
        ... 
    subcase xs’ = x’:xs’’ 
     = 1 + length ((x’:xs’’) ++ ys)  (substitution) 
     = 1 + length (x’:(xs’’ ++ ys))  (unfold ++) 
     = 1 + 1 + length (xs’’ ++ ys)  (unfold length) 
         subsubcase xs’’ = * + .... 

[ ] ++ ys       = ys 
(x:xs) ++ ys = x:(xs ++ ys) 

length [ ]       = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

 

Proof strategy: 

• Proof by induction on the length of xs 

– must cover both cases: * + and x:xs’ 

• apply inductive hypothesis to smaller arguments (smaller lists) 

• In general, Haskell has lots of non-inductive data types like 
Integers (as opposed to Natural Numbers) so you have to be 
careful all series of shrinking arguments have base cases 

– use folding/unfolding of Haskell definitions 

– use lemmas/properties you know of basic operations 

 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = [ ]: 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = [ ]: 
    length ([ ] ++ ys)  (LHS of theorem) 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = [ ]: 
    length ([ ] ++ ys)  (LHS of theorem) 
 = length ys   (unfold ++) 
 = 0 + (length ys)   (arithmetic) 
 = (length [ ]) + (length ys)  (fold length) 
 
case done! 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = x:xs’ 
 
 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = x:xs’ 
    IH: length (xs’ ++ ys) = length xs’ + length ys 
 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = x:xs’ 
    IH: length (xs’ ++ ys) = length xs’ + length ys 
 
    length ((x:xs’) ++ ys)  (LHS of theorem) 
 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = x:xs’ 
    IH: length (xs’ ++ ys) = length xs’ ++ length ys 
 
    length ((x:xs’) ++ ys)  (LHS of theorem) 
= length (x : (xs’ ++ ys))        (unfold ++) 
 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = x:xs’ 
    IH: length (xs’ ++ ys) = length xs’ + length ys 
 
    length ((x:xs’) ++ ys)  (LHS of theorem) 
= length (x : (xs’ ++ ys))        (unfold ++) 
= 1 + length (xs’ ++ ys)  (unfold length) 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = x:xs’ 
    IH: length (xs’ ++ ys) = length xs’ + length ys 
 
    length ((x:xs’) ++ ys)  (LHS of theorem) 
= length (x : (xs’ ++ ys))        (unfold ++) 
= 1 + length (xs’ ++ ys)  (unfold length) 
= 1 + (length xs’ + length ys) (by IH) 
 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = x:xs’ 
    IH: length (xs’ ++ ys) = length xs’ + length ys 
 
    length ((x:xs’) ++ ys)  (LHS of theorem) 
= length (x : (xs’ ++ ys))        (unfold ++) 
= 1 + length (xs’ ++ ys)  (unfold length) 
= 1 + (length xs’ + length ys) (by IH) 
= length (x:xs’) + length ys  (reparenthesizing and folding length) 
 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Proofs over Recursive Haskell Functions 

Theorem:  For all finite Haskell lists xs and ys,  

  length(xs ++ ys) = length xs + length ys 

Proof:  By induction on xs. 

   

 
case xs = x:xs’ 
    IH: length (xs’ ++ ys) = length xs’ + length ys 
 
    length ((x:xs’) ++ ys)  (LHS of theorem) 
= length (x : (xs’ ++ ys))        (unfold ++) 
= 1 + length (xs’ ++ ys)  (unfold length) 
= 1 + (length xs’ + length ys) (by IH) 
= length (x:xs’) + length ys  (reparenthesizing and folding length 
    we have RHS with x:xs’ for xs) 
 
case done! 
 
All cases covered! Proof done! 
 
 

(++) [ ] xs2 = xs2 
(++) (x:xs) xs2 = x:(xs ++ xs2) 

length [ ] = 0 
length (x:xs) = 1 + length xs 



Exercises 

To test your understanding, try to prove the following: 
 

Theorem 1:  for all finite lists xs, ys. listSum(xs ++ ys) = listSum xs + listSum ys 

 

drop n [ ] = [ ] 

drop n (x:xs) = if n <= 0 then x:xs  

                           else drop (n-1) xs 

 

Theorem 2:  for all finite lists xs, natural numbers n and m, 

  drop n (drop m xs) = drop (n+m) xs 

Hint: split the inductive case where xs = x:xs into 3 subcases: 

case xs = x:xs: 

    subcase m = 0 and n = 0:  ... 

    subcase m = 0 and n = n’ + 1 for some natural number n’  (ie: n > 0): ... 

    subcase m = m’+1 for some natural number m’ (ie: m > 0): ... 

 



Summary 

• Haskell is 

– a functional language emphasizing immutable data 

– where every expression has a type: 

• Char, Int, (Char, Int, Float), [ Int ], [ [ [ (Char, [ [ Int ] ] ) ] ] ] 

• Char -> Int, (Char, Char) -> Int -> [ (Char, Int) ] 

• String = [ Char ] 

• Reasoning about Haskell programs involves 

– substitution  of “equals for equals,”  unlike in Java or  C 

– mathematical calculation: 

• unfold function abstractions 

• push symbolic names around like we do in mathematical proofs 

• reason locally using properties of operations (eg: + commutes) 

• use induction hypothesis 

• fold function abstractions back up 

• Homework:  Install Haskell.  Read LYAHFGG Intro, Chapter 1 

 


