
Introducing Haskell

from: COS 441 Slides 3B

by David Walker, Princeton

INDUCTIVE PROOFS
ABOUT HASKELL PROGRAMS

Recall: Proofs by simple calculation

• Some proofs are very easy and can be done by:

– unfolding definitions

– using lemmas or facts we already know

– folding definitions back up

• Eg:

Theorem: easy a b c == easy a c b

Proof:

easy a b c

= a * (b + c) (by unfold)

= a * (c + b) (by commutativity of add)

= easy a c b (by fold)

Definition:
easy x y z = x * (y + z)

given this

we do this proof

Another Theorem

Theorem: For all finite Haskell lists xs and ys,
 length(xs ++ ys) = length xs + length ys

Proof attempt:

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

length [] = 0
length (x:xs) = 1 + length xs

Another Theorem

Theorem: For all finite Haskell lists xs and ys,
 length(xs ++ ys) = length xs + length ys

Proof attempt:
case: xs = []

case: xs = x:xs’

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

length [] = 0
length (x:xs) = 1 + length xs

Another Theorem

Theorem: For all finite Haskell lists xs and ys,
 length(xs ++ ys) = length xs + length ys

Proof attempt:
case: xs = []
 length ([] ++ ys) (LHS of theorem equation)

case: xs = x:xs’

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

length [] = 0
length (x:xs) = 1 + length xs

Another Theorem

Theorem: For all finite Haskell lists xs and ys,
 length(xs ++ ys) = length xs + length ys

Proof attempt:
case: xs = []
 length ([] ++ ys) (LHS of theorem equation)
= length (ys) (unfold ++)

case: xs = x:xs’

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

length [] = 0
length (x:xs) = 1 + length xs

Another Theorem

Theorem: For all finite Haskell lists xs and ys,
 length(xs ++ ys) = length xs + length ys

Proof attempt:
case: xs = []
 length ([] ++ ys) (LHS of theorem equation)
= length (ys) (unfold ++)
= 0 + length (ys) (simple arithmetic)

case: xs = x:xs’

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

length [] = 0
length (x:xs) = 1 + length xs

Another Theorem

Theorem: For all finite Haskell lists xs and ys,
 length(xs ++ ys) = length xs + length ys

Proof attempt:
case: xs = []
 length ([] ++ ys) (LHS of theorem equation)
= length (ys) (unfold ++)
= 0 + length (ys) (simple arithmetic)
= length [] + length (ys) (fold length -- done, we have RHS)

case: xs = x:xs’

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

length [] = 0
length (x:xs) = 1 + length xs

Another Theorem

Theorem: For all finite Haskell lists xs and ys,
 length(xs ++ ys) = length xs + length ys

Proof attempt:
case: xs = []
 length ([] ++ ys) (LHS of theorem equation)
= length (ys) (unfold ++)
= 0 + length (ys) (simple arithmetic)
= length [] + length (ys) (fold length)

case: xs = x:xs’

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

length [] = 0
length (x:xs) = 1 + length xs

Another Theorem

Theorem: For all finite Haskell lists xs and ys,
 length(xs ++ ys) = length xs + length ys

Proof attempt:
case: xs = []
 length ([] ++ ys) (LHS of theorem equation)
= length (ys) (unfold ++)
= 0 + length (ys) (simple arithmetic)
= length [] + length (ys) (fold length)

case: xs = x:xs’
 length ((x:xs’) ++ ys) (LHS of theorem equation)
= length (x:(xs’ ++ ys)) (unfold ++)
= 1 + length (xs’ ++ ys)) (unfold length)

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

length [] = 0
length (x:xs) = 1 + length xs

Another Theorem

Theorem: For all finite Haskell lists xs and ys,
 length(xs ++ ys) = length xs + length ys

Proof attempt:
case: xs = []
 length ([] ++ ys) (LHS of theorem equation)
= length (ys) (unfold ++)
= 0 + length (ys) (simple arithmetic)
= length [] + length (ys) (fold length)

case: xs = x:xs’
 length ((x:xs’) ++ ys) (LHS of theorem equation)
= length (x:(xs’ ++ ys)) (unfold ++)
= 1 + length (xs’ ++ ys)) (unfold length)
 subcase xs’ = []

 subcase xs’ = x’:xs’’ [] ++ ys = ys

(x:xs) ++ ys = x:(xs ++ ys)

length [] = 0
length (x:xs) = 1 + length xs

Another Theorem

Theorem: For all finite Haskell lists xs and ys,
 length(xs ++ ys) = length xs + length ys

Proof attempt:
case: xs = []
 length ([] ++ ys) (LHS of theorem equation)
= length (ys) (unfold ++)
= 0 + length (ys) (simple arithmetic)
= length [] + length (ys) (fold length)

case: xs = x:xs’
 length ((x:xs’) ++ ys) (LHS of theorem equation)
= length (x:(xs’ ++ ys)) (unfold ++)
= 1 + length (xs’ ++ ys)) (unfold length)
 subcase xs’ = []
 ...
 subcase xs’ = x’:xs’’
 = 1 + length ((x’:xs’’) ++ ys) (substitution)
 = 1 + length (x’:(xs’’ ++ ys)) (unfold ++)
 = 1 + 1 + length (xs’’ ++ ys) (unfold length)
 subsubcase xs’’ = * +

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof strategy:

• Proof by induction on the length of xs

– must cover both cases: * + and x:xs’

• apply inductive hypothesis to smaller arguments (smaller lists)

• In general, Haskell has lots of non-inductive data types like
Integers (as opposed to Natural Numbers) so you have to be
careful all series of shrinking arguments have base cases

– use folding/unfolding of Haskell definitions

– use lemmas/properties you know of basic operations

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = []:

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = []:
 length ([] ++ ys) (LHS of theorem)

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = []:
 length ([] ++ ys) (LHS of theorem)
 = length ys (unfold ++)
 = 0 + (length ys) (arithmetic)
 = (length []) + (length ys) (fold length)

case done!

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = x:xs’

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = x:xs’
 IH: length (xs’ ++ ys) = length xs’ + length ys

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = x:xs’
 IH: length (xs’ ++ ys) = length xs’ + length ys

 length ((x:xs’) ++ ys) (LHS of theorem)

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = x:xs’
 IH: length (xs’ ++ ys) = length xs’ ++ length ys

 length ((x:xs’) ++ ys) (LHS of theorem)
= length (x : (xs’ ++ ys)) (unfold ++)

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = x:xs’
 IH: length (xs’ ++ ys) = length xs’ + length ys

 length ((x:xs’) ++ ys) (LHS of theorem)
= length (x : (xs’ ++ ys)) (unfold ++)
= 1 + length (xs’ ++ ys) (unfold length)

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = x:xs’
 IH: length (xs’ ++ ys) = length xs’ + length ys

 length ((x:xs’) ++ ys) (LHS of theorem)
= length (x : (xs’ ++ ys)) (unfold ++)
= 1 + length (xs’ ++ ys) (unfold length)
= 1 + (length xs’ + length ys) (by IH)

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = x:xs’
 IH: length (xs’ ++ ys) = length xs’ + length ys

 length ((x:xs’) ++ ys) (LHS of theorem)
= length (x : (xs’ ++ ys)) (unfold ++)
= 1 + length (xs’ ++ ys) (unfold length)
= 1 + (length xs’ + length ys) (by IH)
= length (x:xs’) + length ys (reparenthesizing and folding length)

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Proofs over Recursive Haskell Functions

Theorem: For all finite Haskell lists xs and ys,

 length(xs ++ ys) = length xs + length ys

Proof: By induction on xs.

case xs = x:xs’
 IH: length (xs’ ++ ys) = length xs’ + length ys

 length ((x:xs’) ++ ys) (LHS of theorem)
= length (x : (xs’ ++ ys)) (unfold ++)
= 1 + length (xs’ ++ ys) (unfold length)
= 1 + (length xs’ + length ys) (by IH)
= length (x:xs’) + length ys (reparenthesizing and folding length
 we have RHS with x:xs’ for xs)

case done!

All cases covered! Proof done!

(++) [] xs2 = xs2
(++) (x:xs) xs2 = x:(xs ++ xs2)

length [] = 0
length (x:xs) = 1 + length xs

Exercises

To test your understanding, try to prove the following:

Theorem 1: for all finite lists xs, ys. listSum(xs ++ ys) = listSum xs + listSum ys

drop n [] = []

drop n (x:xs) = if n <= 0 then x:xs

 else drop (n-1) xs

Theorem 2: for all finite lists xs, natural numbers n and m,

 drop n (drop m xs) = drop (n+m) xs

Hint: split the inductive case where xs = x:xs into 3 subcases:

case xs = x:xs:

 subcase m = 0 and n = 0: ...

 subcase m = 0 and n = n’ + 1 for some natural number n’ (ie: n > 0): ...

 subcase m = m’+1 for some natural number m’ (ie: m > 0): ...

Summary

• Haskell is

– a functional language emphasizing immutable data

– where every expression has a type:

• Char, Int, (Char, Int, Float), [Int], [[[(Char, [[Int]])]]]

• Char -> Int, (Char, Char) -> Int -> [(Char, Int)]

• String = [Char]

• Reasoning about Haskell programs involves

– substitution of “equals for equals,” unlike in Java or C

– mathematical calculation:

• unfold function abstractions

• push symbolic names around like we do in mathematical proofs

• reason locally using properties of operations (eg: + commutes)

• use induction hypothesis

• fold function abstractions back up

• Homework: Install Haskell. Read LYAHFGG Intro, Chapter 1

