Informatics 1
Functional Programming Lectures 13 and 14

Type Classes

Don Sannella
University of Edinburgh
Part I

Type classes
Element

elem :: Eq a => a -> [a] -> Bool

-- comprehension
elem x ys = or [x == y | y <- ys]

-- recursion
elem x [] = False
elem x (y:ys) = x == y || elem x ys

-- higher-order
elem x ys = foldr (||) False (map (x ==) ys)

You've seen types like the one for elem, beginning with Eq a => ... resp. Ord a => ...
These express the requirement that a is a type whose values can be tested for equality resp. order (<).

Here are 3 ways of writing elem. No matter how you defined it, you need to use ==.
That's where the requirement Eq a comes from.
Using element

*Main> elem 1 [2,3,4]
False elem works for Int

*Main> elem 'o' "word"
True elem works for Char

*Main> elem (1,'o') [(0,'w'),(1,'o'),(2,'r'),(3,'d')]
True elem works for (Int,Char)

*Main> elem "word" ["list","of","word"]
True elem works for String = [Char]

*Main> elem (\x -> x) [(\x -> -x), (\x -> -(x))]
No instance for (Eq (a -> a)) arising from a use of ‘elem’
Possible fix: add an instance declaration for (Eq (a -> a))
but elem doesn't work for functions

Testing equality of two functions f,g :: Int -> Int would require testing f x == g x for every possible x :: Int.
That would take forever. So Haskell refuses to try.
The same goes for any type INVOLVING functions, for instance (Int->Int,Bool).
The error message invites you to define equality for this type yourself - see below for how to do that.
Equality type class

Here's how you could define the TYPE CLASS `Eq` if it wasn't built in. The definition gives one or more functions that need to be provided by any instance of that class.

```haskell
class Eq a where
    (==) :: a -> a -> Bool

instance Eq Int where
    (==) = eqInt

instance Eq Char where
    x == y = ord x == ord y

instance (Eq a, Eq b) => Eq (a,b) where
    (u,v) == (x,y) = (u == x) && (v == y)

instance Eq a => Eq [a] where
    [] == [] = True
    [] == y:ys = False
    x:xs == [] = False
    x:xs == y:ys = (x == y) && (xs == ys)
```

Then you can declare that a type is an INSTANCE of the type class by saying what that function / those functions are for that type.

The definitions of the required functions can be as complicated as you like.
Element, translation

```
data EqDict a = EqD (a -> a -> Bool)

eq :: EqDict a -> a -> a -> Bool
eq (EqDict f) = f

elem :: EqDict a -> a -> [a] -> Bool

-- comprehension
elem d x ys = or [ eq d x y | y <- ys ]

-- recursion
elem d x [] = False
elem d x (y:ys) = eq d x y || elem x ys

-- higher-order
elem d x ys = foldr (||) False (map (eq d x) ys)
```

You can define Haskell with type classes by giving a translation into Haskell without type classes. EqDict a is an equality DICTIONARY - an equality function packaged up into a new type. (In general, a dictionary will package up several functions.) eq extracts the equality function from an equality dictionary. We can then define elem with an extra argument d, which tells it how to compute equality on a. Instead of x==y, we write eq d x y
Type classes, translation

\[
\begin{align*}
\text{dInt} & :: \text{EqDict}\ \text{Int} \\
\text{dInt} & = \text{EqD}\ \text{eqInt} \\
\text{dChar} & :: \text{EqDict}\ \text{Char} \\
\text{dChar} & = \text{EqD}\ f \\
\text{where} & \\
f\ x\ y & = \text{eq}\ \text{dInt}\ (\text{ord}\ x)\ (\text{ord}\ y) \\
\text{dPair} & :: (\text{EqDict}\ a, \text{EqDict}\ b) \rightarrow \text{EqDict}\ (a,b) \\
\text{dPair}\ (\text{da,db}) & = \text{EqD}\ f \\
\text{where} & \\
f\ (u,v)\ (x,y) & = \text{eq}\ \text{da}\ u\ x\ \&\&\ \text{eq}\ \text{db}\ v\ y \\
\text{dList} & :: \text{EqDict}\ a \rightarrow \text{EqDict}\ [a] \\
\text{dList}\ d & = \text{EqD}\ f \\
\text{where} & \\
f\ []\ [] & = \text{True} \\
f\ []\ (y:ys) & = \text{False} \\
f\ (x:xs)\ [] & = \text{False} \\
f\ (x:xs)\ (y:ys) & = \text{eq}\ d\ x\ y\ \&\&\ \text{eq}\ (\text{dList}\ d)\ xs\ ys
\end{align*}
\]

We build up dictionaries, sometimes using other dictionaries. Each INSTANCE declaration creates a dictionary.
Using element, translation

*Main> elem dInt 1 [2,3,4]
False

*Main> elem dChar 'o' "word"
True

*Main> elem (dPair dInt dChar) (1,'o') [(0,'w'),(1,'o')]
True

*Main> elem (dList dChar) "word" ["list","of","word"]
True

Haskell uses types to write code for you!

Uses of elem then require the appropriate dictionary as an explicit argument.
But Haskell does all of this automatically, using the types that it can infer.
You don't need to do it yourself and you don't have an opportunity to get it wrong.
Part II

Eq, Ord, Show
Eq, Ord, Show

```
class Eq a where
    (==) :: a -> a -> Bool
    (/=) :: a -> a -> Bool

    -- minimum definition: (==)
    x /= y = not (x == y)

class (Eq a) => Ord a where
    (<) :: a -> a -> Bool
    (<=) :: a -> a -> Bool
    (>) :: a -> a -> Bool
    (>=) :: a -> a -> Bool

    -- minimum definition: (<=)
    x < y = x <= y && x /= y
    x > y = y < x
    x >= y = y <= x

class Show a where
    show :: a -> String
```

Eq, Ord and Show are built-in type classes.

Eq actually has two functions, == and /=

You can define a default for some functions in terms of others but instances can override the default.

Ord EXTENDS Eq
Notice that the default definition of < requires equality.

Show: need a way of converting a value to a String.
Instances for booleans

```haskell
instance Eq Bool where
    False == False  =  True
    False == True   =  False
    True  == False  =  False
    True  == True   =  True

instance Ord Bool where
    False <= False  =  True
    False <= True   =  True
    True  <= False  =  False
    True  <= True   =  True

instance Show Bool where
    show False      =  "False"
    show True       =  "True"
```

Here's how instances of Eq, Ord and Show can be defined for Bool.
Instances for pairs

```haskell
instance (Eq a, Eq b) => Eq (a,b) where
  (x,y) == (x',y') = x == x' && y == y'

instance (Ord a, Ord b) => Ord (a,b) where
  (x,y) <= (x',y') = x < x' || (x == x' && y <= y')

instance (Show a, Show b) => Show (a,b) where
  show (x,y) = "(" ++ show x ++ "," ++ show y ++ ")"
```

Here's how instances of Eq, Ord and Show can be defined for pairs, using Eq, Ord and Show for each component type.
Instances for lists

```haskell
instance Eq a => Eq [a] where
    []    == []    = True
    []    == y:ys = False
    x:xs  == []    = False
    x:xs  == y:ys = x == y && xs == ys

instance Ord a => Ord [a] where
    []    <= ys   = True
    x:xs  <= []    = False
    x:xs  <= y:ys = x < y || (x == y && xs <= ys)

instance Show a => Show [a] where
    show [] = "[]"
    show (x:xs) = "[" ++ showSep x xs ++ "]"
    where
        showSep x [] = show x
        showSep x (y:ys) = show x ++ "," ++ showSep y ys
```

List is similar. We've seen equality already.
Order is an extension of the order on pairs: called dictionary ordering or LEXICOGRAPHIC ORDERING.
Deriving clauses

```haskell
data Bool = False | True
  deriving (Eq, Ord, Show)

data Pair a b = MkPair a b
  deriving (Eq, Ord, Show)

data List a = Nil | Cons a (List a)
  deriving (Eq, Ord, Show)
```

Haskell uses types to write code for you!

You can get definitions of instances of Eq, Ord and Show for free for algebraic types.
Part IV

Sets, revisited
Sets, revisited

```
instance Ord a => Eq (Set a) where
    s == t  =  s 'equal' t
```

Note that this differs from the derived instance!

Here's how we can make Set a an instance of Eq.
This refers to the equality function that we defined on the underlying representation of sets.
The one that Haskell would give you for free is different (except for sets represented as ordered lists).
Part V

Numbers
Numerical classes

class (Eq a, Show a) => Num a where
 (+), (-), (*) :: a -> a -> a
 negate :: a -> a
 fromInteger :: Integer -> a
 -- minimum definition: (+), (-), (*), fromInteger
 negate x = fromInteger 0 - x

class (Num a) => Fractional a where
 (/) :: a -> a -> a
 recip :: a -> a
 fromRational :: Rational -> a
 -- minimum definition: (/), fromRational
 recip x = 1/x

class (Num a, Ord a) => Real a where
 toRational :: a -> Rational

class (Real a, Enum a) => Integral a where
 div, mod :: a -> a -> a
 toInteger :: a -> Integer

There are several type classes for different kinds of numbers. Here's a simplified version of some of them.
A built-in numerical type

\[\text{instance Num Float where}\]
\[(+) \quad = \quad \text{builtInAddFloat}\]
\[(-) \quad = \quad \text{builtInSubtractFloat}\]
\[(*) \quad = \quad \text{builtInMultiplyFloat}\]
\[\text{negate} \quad = \quad \text{builtInNegateFloat}\]
\[\text{fromInteger} \quad = \quad \text{builtInFromIntegerFloat}\]

\[\text{instance Fractional Float where}\]
\[(/) \quad = \quad \text{builtInDivideFloat}\]
\[\text{fromRational} \quad = \quad \text{builtInFromRationalFloat}\]
module Natural(Nat) where
import Test.QuickCheck

data Nat = MkNat Integer

invariant :: Nat -> Bool
invariant (MkNat x) = x >= 0

instance Eq Nat where
 MkNat x == MkNat y = x == y

instance Ord Nat where
 MkNat x <= MkNat y = x <= y

instance Show Nat where
 show (MkNat x) = show x

We can also define our own numerical types. Natural numbers are integers that are \(\geq 0 \).

Remember, we introduce a constructor that is not exported in order to protect the abstraction.
instance Num Nat where
 MkNat x + MkNat y = MkNat (x + y)
 MkNat x - MkNat y
 | x >= y = MkNat (x - y)
 | otherwise = error (show (x-y) ++ " is negative")
 MkNat x * MkNat y = MkNat (x * y)
 fromInteger x
 | x >= 0 = MkNat x
 | otherwise = error (show x ++ " is negative")
 negate = undefined

Now we can declare Nat as an instance of Num.
We need these operations to PRESERVE THE INARIANT: if x, y satisfy the invariant, so should x+y etc.
prop_plus :: Integer -> Integer -> Property
prop_plus m n =
 (m >= 0) && (n >= 0) ==> (m+n >= 0)

prop_times :: Integer -> Integer -> Property
prop_times m n =
 (m >= 0) && (n >= 0) ==> (m*n >= 0)

prop_minus :: Integer -> Integer -> Property
prop_minus m n =
 (m >= 0) && (n >= 0) && (m >= n) ==> (m-n >= 0)

Here are QuickCheck properties for checking that the invariant is preserved.
The invariant isn't preserved if Nat is represented using Int (computer integers) because adding big numbers can give a negative result, but it is preserved if they are represented using Integer (infinite-precision integers).
module NaturalTest where
import Natural

m, n :: Nat
m = fromInteger 2
n = fromInteger 3
Test run

ghci NaturalTest
Ok, modules loaded: NaturalTest, Natural.
*NaturalTest> m
2
*NaturalTest> n
3
*NaturalTest> m+n
5
*NaturalTest> n-m
1
*NaturalTest> m-n
*** Exception: -1 is negative
*NaturalTest> m*n
6
*NaturalTest> fromInteger (-5) :: Nat
*** Exception: -5 is negative
*NaturalTest> MkNat (-5)
Not in scope: data constructor ‘MkNat’
Hiding—the secret of abstraction

```haskell
module Natural(Nat) where ...

> ghci NaturalTest
* NaturalTest> let m = fromInteger 2
* NaturalTest> let s = fromInteger (-5)
*** Exception: -5 is negative
* NaturalTest> let s = MkNat (-5)
Not in scope: data constructor ‘MkNat’

VS.

module NaturalUnabs(Nat(MkNat)) where ...

> ghci NaturalUnabs
* NaturalUnabs> let p = MkNat (-5)  -- breaks invariant
  * NaturalUnabs> invariant p
  False
```

If I export Nat and not MkNat, I can't break the abstraction.
If you check that all of the functions preserve the invariant, then all values are guaranteed to satisfy it.
Part VI

Seasons
Seasons

data Season = Winter | Spring | Summer | Fall

next :: Season -> Season
next Winter = Spring
next Spring = Summer
next Summer = Fall
next Fall = Winter

warm :: Season -> Bool
warm Winter = False
warm Spring = True
warm Summer = True
warm Fall = True
Eq, Ord

instance Eq Season where
 Winter == Winter = True
 Spring == Spring = True
 Summer == Summer = True
 Fall == Fall = True
 _ == _ = False

instance Ord Season where
 Spring <= Winter = False
 Summer <= Winter = False
 Summer <= Spring = False
 Fall <= Winter = False
 Fall <= Spring = False
 Fall <= Summer = False
 _ <= _ = True

instance Show Season where
 show Winter = "Winter"
 show Spring = "Spring"
 show Summer = "Summer"
 show Fall = "Fall"
Class Enum

```haskell
class  Enum a  where
  toEnum :: Int -> a
  fromEnum :: a -> Int
  succ, pred :: a -> a
  enumFrom :: a -> [a]  -- [x..]
  enumFromTo :: a -> a -> [a]  -- [x..y]
  enumFromThen :: a -> a -> [a]  -- [x,y..]
  enumFromThenTo :: a -> a -> a -> [a]  -- [x,y..z]
```

```
-- minimum definition: toEnum, fromEnum
succ x       = toEnum (fromEnum x + 1)
pred x       = toEnum (fromEnum x - 1)
enumFrom x
  = map toEnum [fromEnum x ..]
enumFromTo x y
  = map toEnum [fromEnum x .. fromEnum y]
enumFromThen x y
  = map toEnum [fromEnum x, fromEnum y ..]
enumFromThenTo x y z
  = map toEnum [fromEnum x, fromEnum y .. fromEnum z]
```

Here's another type class, Enum, used for giving meaning to expressions like [x..y].
Syntactic sugar

-- [x..] = enumFrom x
-- [x..y] = enumFromTo x y
-- [x,y..] = enumFromThen x y
-- [x,y..z] = enumFromThenTo x y z
Enumerating Int

instance Enum Int where
 toEnum x = x
 fromEnum x = x
 succ x = x+1
 pred x = x-1
 enumFrom x = iterate (+1) x
 enumFromTo x y = takeWhile (<= y) (iterate (+1) x)
 enumFromThen x y = iterate (+ (y-x)) x
 enumFromThenTo x y z
 = takeWhile (<= z) (iterate (+ (y-x)) x)

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs) | p x = x : takeWhile p xs
 | otherwise = []

Now we can declare Int as an instance of Enum.
Enumerating Seasons

```
instance Enum Season where

  fromEnum Winter   = 0
  fromEnum Spring   = 1
  fromEnum Summer   = 2
  fromEnum Fall     = 3

  toEnum 0          = Winter
  toEnum 1          = Spring
  toEnum 2          = Summer
  toEnum 3          = Fall
```

Here is Season defined as an instance of Enum.
Deriving Seasons

```
data Season = Winter | Spring | Summer | Fall
  deriving (Eq, Ord, Show, Enum)
```

Haskell uses types to write code for you!
Seasons, revisited

next :: Season -> Season
next x = toEnum ((fromEnum x + 1) `mod` 4)

warm :: Season -> Bool
warm x = x `elem` [Spring .. Fall]

-- [Spring .. Fall] = [Spring, Summer, Fall]

Having defined Season as an instance of Enum, we can give better definitions of next and warm.
Part VII

Shape
Shape

```haskell
  type Radius   = Float
  type Width    = Float
  type Height   = Float

  data Shape   = Circle Radius
                | Rect Width Height

  area :: Shape -> Float
  area (Circle r) = pi * r^2
  area (Rect w h) = w * h
```
Eq, Ord, Show

instance Eq Shape where
 Circle r == Circle r’ = r == r’
 Rect w h == Rect w’ h’ = w == w’ && h == h’
 _ == _ = False

instance Ord Shape where
 Circle r <= Circle r’ = r < r’
 Circle r <= Rect w’ h’ = True
 Rect w h <= Rect w’ h’ = w < w’ || (w == w’ && h <= h’)
 _ <= _ = False

instance Show Shape where
 show (Circle r) = "Circle " ++ showN r
 show (Radius w h) = "Radius " ++ showN w ++ " " ++ showN h

 showN :: (Num a) => a -> String
 showN x | x >= 0 = show x
 | otherwise = "(" ++ show x ++ ")"

Here's Shape as an instance of Eq, Ord and Show.
Deriving Shapes

```
data Shape = Circle Radius
  | Rect Width Height
deriving (Eq, Ord, Show)
```

Haskell uses types to write code for you!

You get all of that for free using deriving.
Part VIII

Expressions
Expression Trees

```haskell
data Exp = Lit Int
          | Exp :+: Exp
          | Exp :*: Exp

eval :: Exp -> Int
eval (Lit n) = n
eval (e :+: f) = eval e + eval f
eval (e :*: f) = eval e * eval f

*Main> eval (Lit 2 :+: (Lit 3 :*: Lit 3))
11
*Main> eval ((Lit 2 :+: Lit 3) :*: Lit 3)
15
```
Eq, Ord, Show

instance Eq Exp where
 Lit n == Lit n' = n == n'
 e :+: f == e' :+: f' = e == e' && f == f'
 e :*: f == e' :*: f' = e == e' && f == f'
 _ == _ = False

instance Ord Exp where
 Lit n <= Lit n' = n < n'
 Lit n <= e' :+: f' = True
 Lit n <= e' :*: f' = True
 e :+: f <= e' :+: f' = e < e' || (e == e' && f <= f')
 e :+: f <= e' :*: f' = True
 e :*: f <= e' :*: f' = e < e' || (e == e' && f <= f')
 _ <= _ = False

instance Show Exp where
 show (Lit n) = "Lit " ++ showN n n
 show (e :+: f) = "(" ++ show e ++ " :+: " ++ show f ++ ")"
 show (e :*: f) = "(" ++ show e ++ " :*: " ++ show f ++ ")"

Here's Exp as an instance of Eq, Ord and Show.
Deriving Expressions

```haskell
data Exp = Lit Int
  | Exp :+: Exp
  | Exp :*: Exp

deriving (Eq, Ord, Show)
```

Haskell uses types to write code for you!

You get all of that for free using deriving.