Informatics 1
Functional Programming Lecture 11

Data Representation

Don Sannella
University of Edinburgh
Part I

Complexity

Premature optimisation is the root of all evil. Get it right, and make it clear.
But sometimes you do need things to run fast, or at least not really really slowly.
Especially when processing LOTS of data - millions or billions of items.
This lecture is about data abstraction, a way of separating getting things right from making them run fast.
First, let's look at the difference between fast programs and slow programs, concentrating on what happens for BIG inputs.
How long does it take to check if an item is in a list of n elements? Depends on how fast the computer is, and how big n is.
Best case: 1 step, because it's at the front of the list.
Worst case: n steps, because it's at the end of the list, or not in the list.
Average case: n/2 steps if it's there, n steps if not.
Here's what run time of n steps looks like ("linear") and how it compares with n^2 steps ("quadratic"). So n is faster than n^2 for n>1.
$t = 2n$ vs $t = 0.5n^2$

But what about a really fast quadratic algorithm (say $0.5n^2$) versus a really slow linear algorithm (say $2n$)?

n is better for $n>4$: $2*4 = 0.5*4^2 = 8$.

cn is always better than dn^2, for any c,d, for big enough n. For small n, who cares?

$cn = dn^2$ for $n \geq c/d$.

That's why we care about linear versus quadratic and not about c and d.
O-notation captures the idea that multiplicative and additive factors don’t matter.

f is $O(n)$ means $f(x) \leq cx$ for $x>m$ for some c,m

f is $O(n^m)$ means $f(x) \leq cx^m$ for $x>m$ for some c,m

etc.

You can show that $O(n^2 + n) = O(n^2)$, $O(n^3 + n^2 + n) = O(n^3)$, $O(n+b) = O(n)$ etc.

You only care about the degree of the polynomial - that’s why we say linear, quadratic etc.
$O(n), O(n^2), O(n^3), O(n^4)$

$O(n^4)$ is usually too slow. $O(n^3)$ is maybe tolerable. $O(n^2)$ is okay. $O(n)$ is great.
For really big data sets, you need $O(n)$ or better.
$O(\log n), O(n), O(n \log n), O(2^n)$

Logarithms arise naturally in "divide and conquer" algorithms.
Exponential (2^n) is really bad - intractable. E.g. building truth tables - add one variable, table doubles in size.
Logarithmic ($\log n$) is really great - 1000->1000000 takes twice as long.
Many sorting algorithms are $n \log n$.
Part II

Sets as lists

We're now going to look at several different ways of implementing sets, and compare them using O-notation. The easiest way is using a list, so we'll start with that.
module List (Set, empty, insert, set, element, equal, check) where

import Test.QuickCheck

type Set a = [a]

empty :: Set a
empty = []

insert :: a -> Set a -> Set a
insert x xs = x:xs

set :: [a] -> Set a
set xs = xs

A module gives a name to a program unit, saying what it exports (list of names) and what it needs to do its work (imports).

We're going to look at a series of modules that all export the same names, but have different implementations of data. Here, sets are represented as lists.

Empty set is empty list.

Inserting an element is just : (cons) - adding new element to the beginning of the list.

Could instead add it in the middle or end - doesn't matter. O(1)

Convert a list into a set: don't need to do anything, it is a set already. O(1)
To test if an item is in a set, just use built-in elem function on lists. Looks through list from the beginning, stopping when it finds item or runs out of elements. So O(n).

To check equality, we can't just compare the underlying lists for equality:

\[
\begin{align*}
\text{insert 1 (insert 2 empty)} &= [1,2] \\
\text{insert 2 (insert 1 empty)} &= [2,1] \\
\text{insert 1 (insert 2 (insert 1 empty))} &= [1,2,1]
\end{align*}
\]

but we want to regard these as the same set - order of insertion isn't supposed to matter, for sets. So we define subset (xs `subset` ys if each element in xs is also in ys) and then xs and ys have the same elements if xs `subset` ys and vice versa.

Equality is O(n^2): for every of n elements in xs, need to check if it is in ys - which is O(n) - and vice versa. (Actually O(nm), if xs has length n and ys has length m.)
prop_element :: [Int] -> Bool
prop_element ys =
 and [x 'element' s == odd x | x <- ys]
 where
 s = set [x | x <- ys, odd x]

check =
 quickCheck prop_element

-- Prelude List> check
-- +++ OK, passed 100 tests.
A different way to represent a set is as an ordered list without duplicates. Then
- \(\text{insert 1 (insert 2 empty)} = [1,2] \)
- \(\text{insert 2 (insert 1 empty)} = [1,2] \)
- \(\text{insert 1 (insert 2 (insert 1 empty))) = [1,2]} \)
So equality checking should be easier.
module OrderedList
 (Set, empty, insert, set, element, equal, check) where

import Data.List (nub, sort)
import Test.QuickCheck

type Set a = [a]

invariant :: Ord a => Set a -> Bool
invariant xs =
 and [x < y | (x,y) <- zip xs (tail xs)]

Module heading as before, but I need some extra imports.

Same type definition as before.

But now I have an invariant: I insist that adjacent elements are always in ascending order.
And since < rather than <=, there are no duplicates.
OrderedList.hs (2)

empty :: Set a
empty = []

insert :: Ord a => a -> Set a -> Set a
insert x [] = [x]
insert x (y:ys) | x < y = x : y : ys
 | x == y = y : ys
 | x > y = y : insert x ys

set :: Ord a => [a] -> Set a
set xs = nub (sort xs)

Adding an element to a set is harder then before - we need to put it in the right place. O(n)

Making a list into a set.
One way is to sort it and then remove duplicates, which is O(n log n) provided Haskell uses a good sorting algorithm.
Another way is to insert each item in the list into a set, starting with the empty set:
set xs = foldr insert empty xs
but that is slower, O(n^2).
To check membership: because the list is in order, we can stop when we get to a bigger element.
Still $O(n)$, even though faster than for unordered lists.

OrderedList.hs (3)

```haskell
element :: Ord a => a -> Set a -> Bool
x `element` [] = False
x `element` (y:ys) | x < y = False
                     | x == y = True
                     | x > y = x `element` ys

equal :: Eq a => Set a -> Set a -> Bool
xs `equal` ys = xs == ys
```

Equality: just use list equality.
$O(n)$, much better than unordered lists.
prop_invariant :: [Int] -> Bool
prop_invariant xs = invariant s
 where
 s = set xs

prop_element :: [Int] -> Bool
prop_element ys =
 and [x `element` s == odd x | x <- ys]
 where
 s = set [x | x <- ys, odd x]

check =
 quickCheck prop_invariant >>
 quickCheck prop_element

Prelude OrderedList> check
+++ OK, passed 100 tests.
+++ OK, passed 100 tests.
Part IV

Sets as ordered trees

We can do better!
It's common to represent sets as trees.
If done properly, we can make membership $O(\log n)$ rather than $O(n)$.
module Tree
 (Set (Nil, Node), empty, insert, set, element, equal, check) where

import Test.QuickCheck

data Set a = Nil | Node (Set a) a (Set a)
 A set is a tree: either empty (Nil) or a node with a left subtree, a data value, and a right subtree.

list :: Set a -> [a]
list Nil = []
list (Node l x r) = list l ++ [x] ++ list r
 We can convert a tree to a list by appending all of the node labels in order. "Inorder traversal".

invariant :: Ord a => Set a -> Bool
invariant Nil = True
invariant (Node l x r) =
 invariant l && invariant r &&
 and [y < x | y <- list l] &&
 and [y > x | y <- list r]

 The invariant says that, at every node, all the values in the left subtree are less than the node label,
 and all the values in the right subtree are greater than the node label.
empty :: Set a
empty = Nil

insert :: Ord a => a -> Set a -> Set a
insert x Nil = Node Nil x Nil
insert x (Node l y r)
 | x == y = Node l y r
 | x < y = Node (insert x l) y r
 | x > y = Node l y (insert x r)

set :: Ord a => [a] -> Set a
set = foldr insert empty

Inserting an element needs to put it in the right place. We use the node labels to find the right place.

We can convert a list to a set by inserting each of its elements, starting with the empty tree.
element :: Ord a => a -> Set a -> Bool
x `element` Nil = False
x `element` (Node l y r)
 | x == y = True
 | x < y = x `element` l
 | x > y = x `element` r

equal :: Ord a => Set a -> Set a -> Bool
s `equal` t = list s == list t

To check if x is an element, use the node labels to find the right place to look.
At each node we can ignore a subtree, because of the invariant - we know that x can't be there!
So at each node we can ignore about half of the remaining elements, if the tree is balanced. O(log n).

Equality is O(n): convert to a list in O(n), then check for equality in O(n).
prop_invariant :: [Int] -> Bool
prop_invariant xs = invariant s
 where
 s = set xs

prop_element :: [Int] -> Bool
prop_element ys =
 and [x `element` s == odd x | x <- ys]
 where
 s = set [x | x <- ys, odd x]

check =
 quickCheck prop_invariant >>
 quickCheck prop_element

-- Prelude Tree> check
-- +++ OK, passed 100 tests.
-- +++ OK, passed 100 tests.
Part V

Sets as balanced trees

If we are clever, we can make sure that trees are always balanced: AVL trees
Invented 1962 by Adelson-Velskii and Landis.
First example you're seeing of a clever data structure - there are LOTS of others, see Inf2B.

We're going to ensure that at each node, the depths of the left and right subtrees differ by at most 1. It's impossible to do better than that, unless the tree has exactly $2^d - 1$ elements.
module BalancedTree
 (Set (Nil, Node), empty, insert, set, element, equal, check) where
import Test.QuickCheck

type Depth = Int

data Set a = Nil | Node (Set a) a (Set a) Depth

 Same data representation, but I keep track of the depth at each node.

node :: Set a -> a -> Set a -> Set a
node l x r = Node l x r (1 + (depth l 'max' depth r))

 When I build a node, I need to calculate its depth.

depth :: Set a -> Int
depth Nil = 0
depth (Node _ _ _ d) = d
BalancedTree.hs (2)

list :: Set a -> [a]
list Nil = []
list (Node l x r _) = list l ++ [x] ++ list r

I can turn a tree into a list as before.
invariant :: Ord a => Set a -> Bool
invariant Nil = True
invariant (Node l x r d) =
 invariant l && invariant r &&
 and [y < x | y <- list l] &&
 and [y > x | y <- list r] &&
 abs (depth l - depth r) <= 1 &&
d == 1 + (depth l `max` depth r)

The invariant is the same as before, plus the balance property.
Also, the depth component of each node should be accurate.
BalancedTree.hs (3)

empty :: Set a
empty = Nil

insert :: Ord a => a -> Set a -> Set a
insert x Nil = node empty x empty
insert x (Node l y r _) |
| x == y = node l y r |
| x < y = rebalance (node (insert x l) y r) |
| x > y = rebalance (node l y (insert x r))

set :: Ord a => [a] -> Set a
set = foldr insert empty

Inserting is just as before, except that after inserting I need to rebalance. Rebalancing is the tricky part.
Rebalancing

Rebalancing is best understood by using these pictures.

Node \((\text{Node } a \times b) \ y \ c\) \(\rightarrow\) Node \(a \times (\text{Node } b \ y \ c)\)

A is more than 1 longer than C: rearrange, retaining the order AxByC

Node \((\text{Node } a \times (\text{Node } b \ y \ c) \ z \ d)\)
\(\rightarrow\) Node \((\text{Node } a \times b) \ y \ (\text{Node } c \ z \ d)\)

C is more than 1 longer than D: rearrange, retaining the order AxByCzD.
These, plus symmetric variants, are the only two cases.
BalancedTree.hs (4)

rebalance :: Set a -> Set a
rebalance (Node (Node a x b _) y c _) |
 depth a >= depth b && depth a > depth c
 = node a x (node b y c)
rebalance (Node a x (Node b y c _) _) |
 depth c >= depth b && depth c > depth a
 = node (node a x b) y c
rebalance (Node (Node a x (Node b y c _) _) z d _) |
 depth (node b y c) > depth d
 = node (node a x b) y (node c z d)
rebalance (Node a x (Node (Node b y c _) z d _) _) |
 depth (node b y c) > depth a
 = node (node a x b) y (node c z d)
rebalance a = a

Here's the code - easy to understand if you look at the pictures.
There are 5 cases - the 2 we've seen, plus symmetric variants, plus the case where no rebalancing is required.
BalancedTree.hs (5)

```haskell
element :: Ord a => a -> Set a -> Bool
x `element` Nil = False
x `element` (Node l y r _)  
  | x == y = True
  | x < y = x `element` l
  | x > y = x `element` r

equal :: Ord a => Set a -> Set a -> Bool
s `equal` t = list s == list t
```

Element test as before. Now O(log n), because the tree is balanced.

Equality as before, O(n).
prop_invariant :: [Int] -> Bool
prop_invariant xs = invariant s
 where
 s = set xs

prop_element :: [Int] -> Bool
prop_element ys =
 and [x `element` s == odd x | x <- ys]
 where
 s = set [x | x <- ys, odd x]

check =
 quickCheck prop_invariant >>
 quickCheck prop_element

-- Prelude BalancedTree> check
-- +++ OK, passed 100 tests.
Part VI

Complexity, revisited
Summary

<table>
<thead>
<tr>
<th></th>
<th>insert</th>
<th>set</th>
<th>element</th>
<th>equal</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>OrderedList</td>
<td>$O(n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Tree</td>
<td>$O(\log n)*$</td>
<td>$O(n \log n)*$</td>
<td>$O(\log n)*$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td></td>
<td>$O(n)\dagger$</td>
<td>$O(n^2)\dagger$</td>
<td>$O(n)\dagger$</td>
<td></td>
</tr>
<tr>
<td>BalancedTree</td>
<td>$O(\log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

* average case / † worst case

Here is a summary: considering insertion, creating of a set from a list, element testing, and equality.

Balanced tree is the best.
Actually, you need to consider the mix of operations
List might be best if you know that you will be doing lots of insertions and almost no element testing or equality.