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Part 1

Expression Trees

Now we can use the ideas behind the definitions of List etc. to define EXPRESSIONS
and functions that manipulate them.
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Expression Trees

data Exp

evalExp
evalExp
evalExp
evalExp

showExp
showExp
showExp
showExp

Arithmetic expressions first. Called expression TREES because they reflect
the tree-like structure of expressions.
Unlike (for example) arithmetic expressions represented using String.

= Lit Int An Exp is either a Lit (LITERAL) integer
| Add Exp Exp orAdd of two expressions
| Mul Exp Exp ©rMul(Multplication) of two expressions.

Exp —> Int Evaluating expressions: given an Exp, return its value.
(Lit n) = n Left-hand side pattern :: Exp. Right-hand side :: Int
(Add e f£f) = evalExp e + evalExp £
(Mul e £f) = evalExp e x evalExp £

Exp —> String Converting an Exp into a String.

(Lit n) = show n
(Add e f) = par (showExp e ++ "+" ++4+ showExp f)
(Mul e f) = par (showExp e ++ "«" ++ showExp f)

par :: String —-> String

par s =

"(" _|__|_ S _|__|_ ")"
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the tree-like structure of expressions.
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or Mul (Multiplication) of two expressions.
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Expression Trees

e0, el :: Exp Two expressions with same literals and operators but different structure.
el Add (Lit 2) (Mul (Lit 3) (Lit 3))
el = Mul (Add (Lit 2) (Lit 3)) (Lit 3)

*Main> ShOWEXp e( Here is how to draw them as trees:

"2+ (3x3)) " el is Add
/ \
*Main> evalExp €0 Lit Mul
11 | [\
2 Lit Lit
| |
*Main> showExp el 3 3
" ( (2+3) *3) w
xMain> evalExp el elis /Mul \
b Add Lit
I\
Lit Lit 3
| |
2 3

Trees in Computer Science are drawn upside-down
Same in Linguistics. Terminology: ROOT, BRANCH, LEAF
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e0 is            Add
                  /        \
               Lit       Mul
                 |       /      \
                2      Lit    Lit
                          |       |
                          3     3
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e1 is            Mul
                  /        \
             Add        Lit
            /       \        |
          Lit     Lit      3
            |        |
           2       3
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Trees in Computer Science are drawn upside-down
Same in Linguistics. Terminology: ROOT, BRANCH, LEAF


Expression Trees, Infix

data Exp = Lit Int We could do the same thing using infix notation

| Exp ‘Add' Exp Makes things a little clearer.
|  Exp 'Mul' Exp

evalExp Exp —-> Int

evalExp (Lit n) = n

evalExp (e ‘Add' f) = evalExp e + evalExp £

evalExp (e Mul' f) = evalExp e *x evalExp £

showExp Exp —-> String

showExp (Lit n) = show n

showExp (e ‘Add' f) = par (showExp e ++ "+" ++ showExp f)
showExp (e ‘Mul‘' f) = par (showExp e ++ "+x" ++ showExp f)
par :: String —-> String

par s = "(" ++ s ++ ")"
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Makes things a little clearer.


Expression Trees, Infix

e0, el :: Exp
e0 = Lit 2 ‘Add‘' (Lit 3 *Mul‘' Lit 3)
el = (Lit 2 ‘Add' Lit 3) Mul' Lit 3

*Main> showExp e0
"(2+(3%x3) )"

*Main> evalExp eO0
11

x*Main> showExp el
"((24+3)x3)"

x*Main> evalExp el
15



Expression Trees, Symbols

Int Or, we can use infix SYMBOLS.
:+: Exp Remember, constructors always start with a capital letter.
Symbols used as constructors need to start with :

tx: EX
P Here we put : at the end too, just for symmetry.

Int
= n

evalExp e + evalExp £
= evalExp e *x evalExp £

String
= show n

par (showExp e ++ "+" ++ showExp f)
= par (showExp e ++ "x" ++ showExp f)

data Exp = Lit
| Exp
| Exp
evalExp Exp —->
evalExp (Lit n)
evalExp (e :+: f)
evalExp (e :x: f)
showExp Exp —->
showExp (Lit n)
showExp (e :+: f)
showExp (e :%x: f)
par String -> String

par s

"(" _|_+ S +_|_ ")"
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Remember, constructors always start with a capital letter.
Symbols used as constructors need to start with :
Here we put : at the end too, just for symmetry.


Expression Trees, Symbols

e0, el :: Exp
e0 = Lit 2 :+:

el = (Lit 2 :+:

*Main> showExp
11(2_|_<3*3))n

*Main> evalExp
11

x*Main> showExp
"((24+3)x3)"

x*Main> evalExp
15

(Lit 3 :x: Lit 3)

Lit 3) :%: Lit 3

el

el

el

el



Part 11

Propositions



PrOpOSitionS We can do the same thing for propositions from Inf1-CL

type Name = String

data Prop = Var Name A Prop (proposition) is either a Var (variable) with a name
F or F (False - using F to avoid reuse of Bool constructor)
T or T (True)

or Not (negation) of a Prop

or :|: (disjunction) of two Props
Prop :[: Prop or.&: (conjunction) of two Props
Prop :&: Prop (we couldadd :->: for implication etc.)

deriving (Eq, Ord) This part will be explained in a later lecture (type classes)

|
|
| Not Prop
|
|

type Names = [Name] Names - will be used for sets of names
type Env = [ (Name, Bool) ] Env (environments) - will be used to map names to values

Note, the first case is Var Name, not just Name - we need the constructor to distinguish between cases.


dts
Typewritten Text
We can do the same thing for propositions from Inf1-CL

dts
Typewritten Text
A Prop (proposition) is either a Var (variable) with a name
or F (False - using F to avoid reuse of Bool constructor)
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Env (environments) - will be used to map names to values
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Note, the first case is Var Name, not just Name - we need the constructor to distinguish between cases.


Showing a proposition

showProp :: Prop —-> String

showProp (Var x) = X

showProp F = "p"

showProp T = "T"

showProp (Not p) = par (""" ++ showProp p)

showProp (p :|: g) = par (showProp p ++ "|" ++ showProp q)
showProp (p :&: g) = par (showProp p ++ "&" ++ showProp q)

par :: String —> String
par S — "(" +4 S + 4+ ")"

Converting a Prop to a String. Notice how recursion is essential for this definition.

Notice how the structure of the definition follows exactly the structure of the type definition:

- there is one equation for each constructor

- the clauses for Var, F and T aren't recursive

- the clauses for Not, :|:, :&: are recursive, in just the same way that the type definition is recursive
You can read off the "shape" of the function definition from the form of the type definition.

You've seen this before for recursive definitions over lists.

You can write function definitions on algebraic types that don't follow the shape of the type definition, for instance
falsify :: Prop -> Prop
falsify p=F

but following the shape is common and a good starting point.
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Converting a Prop to a String. Notice how recursion is essential for this definition.
Notice how the structure of the definition follows exactly the structure of the type definition:
- there is one equation for each constructor
- the clauses for Var, F and T aren't recursive
- the clauses for Not, :|:, :&: are recursive, in just the same way that the type definition is recursive
You can read off the "shape" of the function definition from the form of the type definition.
You've seen this before for recursive definitions over lists.
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You can write function definitions on algebraic types that don't follow the shape of the type definition, for instance
   falsify :: Prop -> Prop
   falsify p = F
but following the shape is common and a good starting point.


Names 1n a proposition

names :: Prop —> Names

names (Var x) = [x]

names F []

names T =[]

names (Not p) = names p

names (p :|]: g) = nub (names p ++ names q)
names (p :&: g) = nub (names p ++ names q)

Computing the set of all of the variable names in a Prop.
Important if you want to build a truth table for a proposition.
The built-in function nub removes duplicates from a list.
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Evaluating a proposition in an environment

eval :: Env —-> Prop —-> Bool

eval e (Var x) = lookUp e x

eval e F = False

eval e T = True

eval e (Not p) = not (eval e p)

eval e (p :|: Q) = eval e p || eval e g
eval e (p :&: Q) = eval e p && eval e g

lookUp :: Eq a => [(a,b)] -> a —> b

lookUp xys x = the [ v | (x',y) <= xys, x == x" ]
where
the [x]

Il
X

Evaluating a Prop tells us if it's true or false.
Only makes sense if we provide an ENVIRONMENT which gives the values of the variables.

Evaluation is along similar lines to evaluation of arithmetic expressions.
Left-hand pattern :: Prop. Right-hand side :: Bool

lookup is for looking up the value of a variable in an Env.

An Env is a list of (variable name, value) pairs.

The comprehension gives a list, which should contain one value.
the returns that value.
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Propositions

p0O :: Prop

p0 =  (Var "a" :&: Not (Var "a"))

el :: Env 00 is 8

e0 = [("a",True) ] JE
Var Not

*Main> showProp pO | |

(a& ("a)) v

*Main> names p0
["a"]

*Main> eval e0 pO0
False

*Main> lookUp e0 "a"
True
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p0 is            :&:
                  /      \
               Var     Not
                 |          |
               "a"      Var
                            |
                          "a"


How eval works

eval e (Var x) = lookUp e x

eval e F = False

eval e T = True

eval e (Not p) = not (eval e p)

eval e (p :|: q) = eval e p || eval e g

eval e (p :&: Q) = eval e p && eval e g
eval e0 (Var "a" :&: Not (Var "a"))
(eval e0 (Var "a")) && (eval e0 (Not (Var "a")))

(lookup e0 "a") && (eval e0 (Not (Var "a")))
True && (eval e0 (Not (Var "a")))

True && (not (eval e0 (Var "a")))

Here's how eval works for this example.
The result will also be False if the environment says that a is False.
So this proposition is a CONTRADICTION.

True && False

False
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The result will also be False if the environment says that a is False.
So this proposition is a CONTRADICTION.


Propositions

pl :: Prop
el = (Var "a" :&: Var "b") =:|:
(Not (Var "a") :&: Not (Var "b"))

el :: Env

el = [ ("a",False), ("b",False) ]
*Main> showProp pl plis :
((a&b) | ((Ta)&("b))) /’ \\

‘& ‘&
*Main> names pl [N\
["a", "b"] Var Var Not Not

o
"a" "b" Var Var

|
llall Ilbll

*Main> eval el pl
True

x*Main> lookUp el "a"
False
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p1 is            :|:
                 /       \
               /           \
             :&:         :&:
            /     \      /     \
        Var  Var  Not  Not
           |      |      |       |
         "a"   "b"  Var   Var
                         |       |
                        "a"   "b"


All possible environments

envs :: Names —> [Env]

envs [] = [[]]
envs (x:xs) = [ (x,False):e | e <- envs xs | ++
[ (x,True ):e | e <- envs xs |

Alternative

envs :: Names —> [Env]
envs [] = [[]]

envs (x:x8) = [ (x,b):e | b <- bs, e <- envs xs |
where
bs = [False, True]

To write functions for checking whether a Prop is a tautology, a contradiction, satisfiable etc.

we need to compute all of the possible environments over a set of variables.

Consider envs (x:xs) - combine the possible choices for x with all the possible choices for the other variables.
Careful with envs [] - there is one environment over the empty set of variables, namely the empty environment.
If you define envs [] =[], then envs anything =[]
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we need to compute all of the possible environments over a set of variables.
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All possible environments

envs []
= [[]]
envs ["b"]

= [("b",False) :[]]
= [[("b",False) ],
[ ("b", True ) ]]

++

envs ["a"’ "b"]

= [("a",False):e | e <- envs
[ ("a",True ):e | e <- envs

= [("a",False):[ ("b",False) ],
[("a",True ):[("b",False) ],

= [[("a",False), ("b",False) ],
[("a",False), ("b",True )],
[("a",True ), ("b",False) ],
[("a",True ), ("b",True )1]]

Here's an example.

[ ("b", True ) :

[1]

["b"] ] _|__|_
["b"] :|

("a",False)
(

"a
"a", True )

[ ("b", True
[ ("b", True

) 1]
) 1]

++
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Satisfiable

satisfiable :: Prop —-> Bool
satisfiable p = or [ eval e p | e <- envs (names p) |

A Prop is satisfiable if there is at least one environment that makes it evaluate to True.
Combining:

- getting the set of variables in a Prop (names)

- getting all the environments over those names (envs)

- evaluating Prop in each of those environments (eval)

Apply or to the list of results to get the answer - False only if Prop evaluates to False in all those environments.
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A Prop is satisfiable if there is at least one environment that makes it evaluate to True.
Combining:
- getting the set of variables in a Prop (names)
- getting all the environments over those names (envs)
- evaluating Prop in each of those environments (eval)
Apply or to the list of results to get the answer - False only if Prop evaluates to False in all those environments.


Propositions

pl :: Prop
pl = (Var "a" :&: Var "b") :|:
(Not (Var "a") :&: Not (Var "b"))

x*Main> envs (names pl)

[[("a",False), ("b",
[("a"’False)’ ("b",
[ ("a"’True ), ("b",
[ ("a"’True ), ("b"’

*Main> [ eval e pl
[True,

False,

False,

True]

1,

False)
True) |,
False) ],
True )]]

| e <- envs (names pl)

*Main> satisfiable pl

True

Here's an example.
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Here's an example.


Part 111

Maybe, Maybe Not



Optlonal Data Maybe a is a built-in type that is handy when a value of type a may be missing.

data Maybe a = Nothing | Just a

A value of type Maybe a is either Nothing (value missing)
or a value of type a "wrapped up" with the constructor Just.

Optlonal argument Useful for the situation where there is an optional argument,

power :: Maybe Int -> Int -> Int with a DEFAULT when it is not supplied.
power Nothing n = 2 7
power (Just m) n = m "~ n

Optional result Useful when a function may have no result.

divide :: Int -> Int -> Maybe Int
divide n 0 = Nothing
divide n m = Just (n ‘div' m)
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or a value of type a "wrapped up" with the constructor Just.
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Useful for the situation where there is an optional argument,
              with a DEFAULT when it is not supplied.
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Useful when a function may have no result.


Using an Optional Result

divide :: Int -> Int -> Maybe Int

divide n 0 = Nothing Using an optional result requires "unwrapping" it
divide n m = Just (n ‘div' m) from the constructor.

wrong :: Int —-> Int —-> Int

o Using "normal” division: n ‘div.- m + 3
wrong n m = divide n m + 3

Doesn't work: divide n m :: Maybe Int
and + adds an Int to an Int

right :: Int -> Int —-> Int
right n m = case divide n m of
Nothing -> 3
Just r —> r + 3 Justr: MaybeInt,sor::Int

case syntax is new: case expr of patl -> expl ... pat n -> expn
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from the constructor.
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Using "normal" division:  n `div` m + 3
Doesn't work: divide n m :: Maybe Int
and + adds an Int to an Int
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case syntax is new:  case expr of pat1 -> exp1 ... pat n -> expn


Part IV

Union of Two Types



Either a or b This built-in type can be used to get lists with values of different types
For instance, [Either Int Bool]

data Either a b = Left a | Right b

A value of type Either a b is either a value of type a, wrapped up using Lefft,
or a value of type b, wrapped up using Right.

mylist :: [Either Int String]
mylist = [Left 4, Left 1, Right "hello", Left 2,
Right " ", Right "world", Left 17]

addints :: [Either Int String] -> Int

addints [] = 0
addints (Left n : xs) = n + addints xs
addints (Right s : xs) = addints xs

A function to add all of the integers in a list of type [Either Int String],
ignoring the strings.

addints’ :: [Either Int String] -> Int
addints’ xs = sum [n | Left n <- xg]

The same function, written using comprehension.
Notice the use of the pattern Left n to select only the values of this form.
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Notice the use of the pattern Left n to select only the values of this form.


Eitheraor b

data Either a b = Left a | Right b

mylist :: [Either Int String]
mylist = [Left 4, Left 1, Right "hello", Left 2,
Right " ", Right "world", Left 17]

addstrs :: [Either Int String] —-> String

addstrs [] = "nn
addstrs (Left n : xs) = addstrs xs
addstrs (Right s : xs) = s ++ addstrs xs

A function to concatenate all of the strings in a list of type [Either Int String],
ignoring the integers.

addstrs’ :: [Either Int String] —-> String

addstrs’ xs = concat [s | Right s <- xs]

The same function written using comprehension.

These examples haven't shown:

- types with multiple parameters

- mutually recursive types

- functional types as arguments of constructors
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A function to concatenate all of the strings in a list of type [Either Int String],
ignoring the integers.
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- types with multiple parameters
- mutually recursive types
- functional types as arguments of constructors


Part V

Aside:
All sublists of a list



All sublists of a list

subs :: [a] —> [[a]]
subs [] = [[]]
subs (x:xs) = subs xs ++ [ x:ys | ys <- subs xs ]



All sublists of a list

subs []
= [[]]

subs ["b"]
= subs [] ++ ["b":ys | ys <- subs []]
= [[]1] ++t ["b":[]]
= [[I, ["b"]]

" " " n" ]

subs ["a",
= subs ["b"] ++ ["a":ys | ys <— subs ["b"]]
— [[]’ ["b"]] ++ ["a":[], "a":["b"]]
= [[l, ["b"], ["a"], ["a","b"]]



Part VI

The Universal Type and Micro-Haskell

Optional material: an interpreter for a tiny subset of Haskell
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The Universal Type and Micro-Haskell

data Univ = UBool Bool
| UInt Int
| UList [Univ]
| UFun (Univ —> Univ)

data Hask = HTrue

HFalse

HIf Hask Hask Hask
HLit Int

HEqg Hask Hask

HAdd Hask Hask
HVar Name

HLam Name Hask
HApp Hask Hask

type HEnv = [ (Name, Univ) ]



Show and Equality for Universal Type

showUniv Univ —-> String
showUniv (UBool b) = show b
showUniv (UInt 1) = show 1

showUniv (UList us) =
"[" ++ concat (intersperse "

eqUniv :: Univ -> Univ —-> Bool
eqUniv (UBool b) (UBool c) = Db == cC
eqUniv (UInt i) (UInt 7) = 1 == ]
eqUniv (UList us) (UList vs) =

and [ egqUniv u v | (u,v) <— zlp us Vs
eqUniv u v = False

Can’t show functions or test them for equality.

4

(map showUniv us))

++

"] "



Micro-Haskell in Haskell

hEval Hask —-> HEnv —-> Univ

hEval HTrue r = UBool True

hEval HFalse r = UBool False

hEval (HIf c¢c d e) «r =
hif (hEval ¢ r) (hEval d r) (hEval e r)
where hif (UBool b) v w = 1if b then v else w

hEval (HLit 1) r = UlInt 1

hEval (HEg d e) r = heq (hEval d r) (hEval e r)
where heg (UInt i) (UInt j) = UBool (i == 73)

hFval (HAdd d e) r = hadd (hEval d r) (hEval e r)
where hadd (UInt 1) (UInt 3j) = UInt (1 + 73)

hEval (HVar x) r = lookUp r x

hEval (HLam x e) r = UFun (\ v —> hEval e ((x,V)

hEval (HApp d e) r = happ (hEval d r) (hEval e r)
where happ (UFun f) v = £ v

lookUp HEnv —-> Name -> Univ

lookUp x r = head [ v | (y,Vv) <—- r, x == ]

1r))



Test data

hO =
(HApp

(HApp
(HLam "x" (HLam "y" (HAdd (HVar "x") (HVar "y"))))

(HLit 3))
(HLit 4))

test_h0 = eqUniv (hEval hO []) (UInt 7)





