Informatics 1

Functional Programming Lecture 10

Expression Trees

as Algebraic Data Types

Don Sannella

University of Edinburgh

Part 1

Expression Trees

Now we can use the ideas behind the definitions of List etc. to define EXPRESSIONS
and functions that manipulate them.

dts
Typewritten Text
Now we can use the ideas behind the definitions of List etc. to define EXPRESSIONS
and functions that manipulate them.

Expression Trees

data Exp

evalExp
evalExp
evalExp
evalExp

showExp
showExp
showExp
showExp

Arithmetic expressions first. Called expression TREES because they reflect
the tree-like structure of expressions.
Unlike (for example) arithmetic expressions represented using String.

= Lit Int An Exp is either a Lit (LITERAL) integer
| Add Exp Exp orAdd of two expressions
| Mul Exp Exp ©rMul(Multplication) of two expressions.

Exp —> Int Evaluating expressions: given an Exp, return its value.
(Lit n) = n Left-hand side pattern :: Exp. Right-hand side :: Int
(Add e f£f) = evalExp e + evalExp £
(Mul e £f) = evalExp e x evalExp £

Exp —> String Converting an Exp into a String.

(Lit n) = show n
(Add e f) = par (showExp e ++ "+" ++4+ showExp f)
(Mul e f) = par (showExp e ++ "«" ++ showExp f)

par :: String —-> String

par s =

"(" _|__|_ S _|__|_ ")"

dts
Typewritten Text
Arithmetic expressions first. Called expression TREES because they reflect
the tree-like structure of expressions.
Unlike (for example) arithmetic expressions represented using String.

dts
Typewritten Text
An Exp is either a Lit (LITERAL) integer
or Add of two expressions
or Mul (Multiplication) of two expressions.

dts
Typewritten Text
Evaluating expressions: given an Exp, return its value.
Left-hand side pattern :: Exp. Right-hand side :: Int

dts
Typewritten Text
Converting an Exp into a String.

Expression Trees

e0, el :: Exp Two expressions with same literals and operators but different structure.
el Add (Lit 2) (Mul (Lit 3) (Lit 3))
el = Mul (Add (Lit 2) (Lit 3)) (Lit 3)

*Main> ShOWEXp e(Here is how to draw them as trees:

"2+ (3x3)) " el is Add
/ \
*Main> evalExp €0 Lit Mul
11 | [\
2 Lit Lit
| |
*Main> showExp el 3 3
" ((2+3) *3) w
xMain> evalExp el elis /Mul \
b Add Lit
I\
Lit Lit 3
| |
2 3

Trees in Computer Science are drawn upside-down
Same in Linguistics. Terminology: ROOT, BRANCH, LEAF

dts
Typewritten Text
Two expressions with same literals and operators but different structure.

dts
Typewritten Text
Here is how to draw them as trees:
e0 is Add
 / \
 Lit Mul
 | / \
 2 Lit Lit
 | |
 3 3

dts
Typewritten Text
e1 is Mul
 / \
 Add Lit
 / \ |
 Lit Lit 3
 | |
 2 3

dts
Typewritten Text
Trees in Computer Science are drawn upside-down
Same in Linguistics. Terminology: ROOT, BRANCH, LEAF

Expression Trees, Infix

data Exp = Lit Int We could do the same thing using infix notation

| Exp ‘Add' Exp Makes things a little clearer.
| Exp 'Mul' Exp

evalExp Exp —-> Int

evalExp (Lit n) = n

evalExp (e ‘Add' f) = evalExp e + evalExp £

evalExp (e Mul' f) = evalExp e *x evalExp £

showExp Exp —-> String

showExp (Lit n) = show n

showExp (e ‘Add' f) = par (showExp e ++ "+" ++ showExp f)
showExp (e ‘Mul‘' f) = par (showExp e ++ "+x" ++ showExp f)
par :: String —-> String

par s = "(" ++ s ++ ")"

dts
Typewritten Text
We could do the same thing using infix notation
Makes things a little clearer.

Expression Trees, Infix

e0, el :: Exp
e0 = Lit 2 ‘Add‘' (Lit 3 *Mul‘' Lit 3)
el = (Lit 2 ‘Add' Lit 3) Mul' Lit 3

*Main> showExp e0
"(2+(3%x3))"

*Main> evalExp eO0
11

x*Main> showExp el
"((24+3)x3)"

x*Main> evalExp el
15

Expression Trees, Symbols

Int Or, we can use infix SYMBOLS.
:+: Exp Remember, constructors always start with a capital letter.
Symbols used as constructors need to start with :

tx: EX
P Here we put : at the end too, just for symmetry.

Int
= n

evalExp e + evalExp £
= evalExp e *x evalExp £

String
= show n

par (showExp e ++ "+" ++ showExp f)
= par (showExp e ++ "x" ++ showExp f)

data Exp = Lit
| Exp
| Exp
evalExp Exp —->
evalExp (Lit n)
evalExp (e :+: f)
evalExp (e :x: f)
showExp Exp —->
showExp (Lit n)
showExp (e :+: f)
showExp (e :%x: f)
par String -> String

par s

"(" _|_+ S +_|_ ")"

dts
Typewritten Text
Or, we can use infix SYMBOLS.
Remember, constructors always start with a capital letter.
Symbols used as constructors need to start with :
Here we put : at the end too, just for symmetry.

Expression Trees, Symbols

e0, el :: Exp
e0 = Lit 2 :+:

el = (Lit 2 :+:

*Main> showExp
11(2_|_<3*3))n

*Main> evalExp
11

x*Main> showExp
"((24+3)x3)"

x*Main> evalExp
15

(Lit 3 :x: Lit 3)

Lit 3) :%: Lit 3

el

el

el

el

Part 11

Propositions

PrOpOSitionS We can do the same thing for propositions from Inf1-CL

type Name = String

data Prop = Var Name A Prop (proposition) is either a Var (variable) with a name
F or F (False - using F to avoid reuse of Bool constructor)
T or T (True)

or Not (negation) of a Prop

or :|: (disjunction) of two Props
Prop :[: Prop or.&: (conjunction) of two Props
Prop :&: Prop (we couldadd :->: for implication etc.)

deriving (Eq, Ord) This part will be explained in a later lecture (type classes)

|
|
| Not Prop
|
|

type Names = [Name] Names - will be used for sets of names
type Env = [(Name, Bool)] Env (environments) - will be used to map names to values

Note, the first case is Var Name, not just Name - we need the constructor to distinguish between cases.

dts
Typewritten Text
We can do the same thing for propositions from Inf1-CL

dts
Typewritten Text
A Prop (proposition) is either a Var (variable) with a name
or F (False - using F to avoid reuse of Bool constructor)
or T (True)
or Not (negation) of a Prop
 or :|: (disjunction) of two Props
 or :&: (conjunction) of two Props
 (we could add :->: for implication etc.)

dts
Typewritten Text
This part will be explained in a later lecture (type classes)

dts
Typewritten Text
Names - will be used for sets of names
Env (environments) - will be used to map names to values

dts
Typewritten Text
Note, the first case is Var Name, not just Name - we need the constructor to distinguish between cases.

Showing a proposition

showProp :: Prop —-> String

showProp (Var x) = X

showProp F = "p"

showProp T = "T"

showProp (Not p) = par (""" ++ showProp p)

showProp (p :|: g) = par (showProp p ++ "|" ++ showProp q)
showProp (p :&: g) = par (showProp p ++ "&" ++ showProp q)

par :: String —> String
par S — "(" +4 S + 4+ ")"

Converting a Prop to a String. Notice how recursion is essential for this definition.

Notice how the structure of the definition follows exactly the structure of the type definition:

- there is one equation for each constructor

- the clauses for Var, F and T aren't recursive

- the clauses for Not, :|:, :&: are recursive, in just the same way that the type definition is recursive
You can read off the "shape" of the function definition from the form of the type definition.

You've seen this before for recursive definitions over lists.

You can write function definitions on algebraic types that don't follow the shape of the type definition, for instance
falsify :: Prop -> Prop
falsify p=F

but following the shape is common and a good starting point.

dts
Typewritten Text
Converting a Prop to a String. Notice how recursion is essential for this definition.
Notice how the structure of the definition follows exactly the structure of the type definition:
- there is one equation for each constructor
- the clauses for Var, F and T aren't recursive
- the clauses for Not, :|:, :&: are recursive, in just the same way that the type definition is recursive
You can read off the "shape" of the function definition from the form of the type definition.
You've seen this before for recursive definitions over lists.

dts
Typewritten Text
You can write function definitions on algebraic types that don't follow the shape of the type definition, for instance
 falsify :: Prop -> Prop
 falsify p = F
but following the shape is common and a good starting point.

Names 1n a proposition

names :: Prop —> Names

names (Var x) = [x]

names F []

names T =[]

names (Not p) = names p

names (p :|]: g) = nub (names p ++ names q)
names (p :&: g) = nub (names p ++ names q)

Computing the set of all of the variable names in a Prop.
Important if you want to build a truth table for a proposition.
The built-in function nub removes duplicates from a list.

dts
Typewritten Text
Computing the set of all of the variable names in a Prop.
Important if you want to build a truth table for a proposition.
The built-in function nub removes duplicates from a list.

Evaluating a proposition in an environment

eval :: Env —-> Prop —-> Bool

eval e (Var x) = lookUp e x

eval e F = False

eval e T = True

eval e (Not p) = not (eval e p)

eval e (p :|: Q) = eval e p || eval e g
eval e (p :&: Q) = eval e p && eval e g

lookUp :: Eq a => [(a,b)] -> a —> b

lookUp xys x = the [v | (x',y) <= xys, x == x"]
where
the [x]

Il
X

Evaluating a Prop tells us if it's true or false.
Only makes sense if we provide an ENVIRONMENT which gives the values of the variables.

Evaluation is along similar lines to evaluation of arithmetic expressions.
Left-hand pattern :: Prop. Right-hand side :: Bool

lookup is for looking up the value of a variable in an Env.

An Env is a list of (variable name, value) pairs.

The comprehension gives a list, which should contain one value.
the returns that value.

dts
Typewritten Text
Evaluating a Prop tells us if it's true or false.
Only makes sense if we provide an ENVIRONMENT which gives the values of the variables.

dts
Typewritten Text
Evaluation is along similar lines to evaluation of arithmetic expressions.
Left-hand pattern :: Prop. Right-hand side :: Bool

dts
Typewritten Text
lookup is for looking up the value of a variable in an Env.
An Env is a list of (variable name, value) pairs.
The comprehension gives a list, which should contain one value.
the returns that value.

Propositions

p0O :: Prop

p0 = (Var "a" :&: Not (Var "a"))

el :: Env 00 is 8

e0 = [("a",True)] JE
Var Not

*Main> showProp pO | |

(a& ("a)) v

*Main> names p0
["a"]

*Main> eval e0 pO0
False

*Main> lookUp e0 "a"
True

dts
Typewritten Text
p0 is :&:
 / \
 Var Not
 | |
 "a" Var
 |
 "a"

How eval works

eval e (Var x) = lookUp e x

eval e F = False

eval e T = True

eval e (Not p) = not (eval e p)

eval e (p :|: q) = eval e p || eval e g

eval e (p :&: Q) = eval e p && eval e g
eval e0 (Var "a" :&: Not (Var "a"))
(eval e0 (Var "a")) && (eval e0 (Not (Var "a")))

(lookup e0 "a") && (eval e0 (Not (Var "a")))
True && (eval e0 (Not (Var "a")))

True && (not (eval e0 (Var "a")))

Here's how eval works for this example.
The result will also be False if the environment says that a is False.
So this proposition is a CONTRADICTION.

True && False

False

dts
Typewritten Text
Here's how eval works for this example.
The result will also be False if the environment says that a is False.
So this proposition is a CONTRADICTION.

Propositions

pl :: Prop
el = (Var "a" :&: Var "b") =:|:
(Not (Var "a") :&: Not (Var "b"))

el :: Env

el = [("a",False), ("b",False)]
*Main> showProp pl plis :
((a&b) | ((Ta)&("b))) /’ \\

‘& ‘&
*Main> names pl [N\
["a", "b"] Var Var Not Not

o
"a" "b" Var Var

|
llall Ilbll

*Main> eval el pl
True

x*Main> lookUp el "a"
False

dts
Typewritten Text
p1 is :|:
 / \
 / \
 :&: :&:
 / \ / \
 Var Var Not Not
 | | | |
 "a" "b" Var Var
 | |
 "a" "b"

All possible environments

envs :: Names —> [Env]

envs [] = [[]]
envs (x:xs) = [(x,False):e | e <- envs xs | ++
[(x,True):e | e <- envs xs |

Alternative

envs :: Names —> [Env]
envs [] = [[]]

envs (x:x8) = [(x,b):e | b <- bs, e <- envs xs |
where
bs = [False, True]

To write functions for checking whether a Prop is a tautology, a contradiction, satisfiable etc.

we need to compute all of the possible environments over a set of variables.

Consider envs (x:xs) - combine the possible choices for x with all the possible choices for the other variables.
Careful with envs [] - there is one environment over the empty set of variables, namely the empty environment.
If you define envs [] =[], then envs anything =[]

dts
Typewritten Text
To write functions for checking whether a Prop is a tautology, a contradiction, satisfiable etc.
we need to compute all of the possible environments over a set of variables.
Consider envs (x:xs) - combine the possible choices for x with all the possible choices for the other variables.
Careful with envs [] - there is one environment over the empty set of variables, namely the empty environment.
If you define envs [] = [], then envs anything = []

All possible environments

envs []
= [[]]
envs ["b"]

= [("b",False) :[]]
= [[("b",False)],
[("b", True)]]

++

envs ["a"’ "b"]

= [("a",False):e | e <- envs
[("a",True):e | e <- envs

= [("a",False):[("b",False)],
[("a",True):[("b",False)],

= [[("a",False), ("b",False)],
[("a",False), ("b",True)],
[("a",True), ("b",False)],
[("a",True), ("b",True)1]]

Here's an example.

[("b", True) :

[1]

["b"]] _|__|_
["b"] :|

("a",False)
(

"a
"a", True)

[("b", True
[("b", True

) 1]
) 1]

++

dts
Typewritten Text
Here's an example.

Satisfiable

satisfiable :: Prop —-> Bool
satisfiable p = or [eval e p | e <- envs (names p) |

A Prop is satisfiable if there is at least one environment that makes it evaluate to True.
Combining:

- getting the set of variables in a Prop (names)

- getting all the environments over those names (envs)

- evaluating Prop in each of those environments (eval)

Apply or to the list of results to get the answer - False only if Prop evaluates to False in all those environments.

dts
Typewritten Text
A Prop is satisfiable if there is at least one environment that makes it evaluate to True.
Combining:
- getting the set of variables in a Prop (names)
- getting all the environments over those names (envs)
- evaluating Prop in each of those environments (eval)
Apply or to the list of results to get the answer - False only if Prop evaluates to False in all those environments.

Propositions

pl :: Prop
pl = (Var "a" :&: Var "b") :|:
(Not (Var "a") :&: Not (Var "b"))

x*Main> envs (names pl)

[[("a",False), ("b",
[("a"’False)’ ("b",
[("a"’True), ("b",
[("a"’True), ("b"’

*Main> [eval e pl
[True,

False,

False,

True]

1,

False)
True) |,
False)],
True)]]

| e <- envs (names pl)

*Main> satisfiable pl

True

Here's an example.

dts
Typewritten Text
Here's an example.

Part 111

Maybe, Maybe Not

Optlonal Data Maybe a is a built-in type that is handy when a value of type a may be missing.

data Maybe a = Nothing | Just a

A value of type Maybe a is either Nothing (value missing)
or a value of type a "wrapped up" with the constructor Just.

Optlonal argument Useful for the situation where there is an optional argument,

power :: Maybe Int -> Int -> Int with a DEFAULT when it is not supplied.
power Nothing n = 2 7
power (Just m) n = m "~ n

Optional result Useful when a function may have no result.

divide :: Int -> Int -> Maybe Int
divide n 0 = Nothing
divide n m = Just (n ‘div' m)

dts
Typewritten Text
Maybe a is a built-in type that is handy when a value of type a may be missing.

dts
Typewritten Text
A value of type Maybe a is either Nothing (value missing)
or a value of type a "wrapped up" with the constructor Just.

dts
Typewritten Text
Useful for the situation where there is an optional argument,
 with a DEFAULT when it is not supplied.

dts
Typewritten Text
Useful when a function may have no result.

Using an Optional Result

divide :: Int -> Int -> Maybe Int

divide n 0 = Nothing Using an optional result requires "unwrapping" it
divide n m = Just (n ‘div' m) from the constructor.

wrong :: Int —-> Int —-> Int

o Using "normal” division: n ‘div.- m + 3
wrong n m = divide n m + 3

Doesn't work: divide n m :: Maybe Int
and + adds an Int to an Int

right :: Int -> Int —-> Int
right n m = case divide n m of
Nothing -> 3
Just r —> r + 3 Justr: MaybeInt,sor::Int

case syntax is new: case expr of patl -> expl ... pat n -> expn

dts
Typewritten Text
Using an optional result requires "unwrapping" it
from the constructor.

dts
Typewritten Text
Using "normal" division: n `div` m + 3
Doesn't work: divide n m :: Maybe Int
and + adds an Int to an Int

dts
Typewritten Text
Just r :: Maybe Int, so r :: Int

dts
Typewritten Text
case syntax is new: case expr of pat1 -> exp1 ... pat n -> expn

Part IV

Union of Two Types

Either a or b This built-in type can be used to get lists with values of different types
For instance, [Either Int Bool]

data Either a b = Left a | Right b

A value of type Either a b is either a value of type a, wrapped up using Lefft,
or a value of type b, wrapped up using Right.

mylist :: [Either Int String]
mylist = [Left 4, Left 1, Right "hello", Left 2,
Right " ", Right "world", Left 17]

addints :: [Either Int String] -> Int

addints [] = 0
addints (Left n : xs) = n + addints xs
addints (Right s : xs) = addints xs

A function to add all of the integers in a list of type [Either Int String],
ignoring the strings.

addints’ :: [Either Int String] -> Int
addints’ xs = sum [n | Left n <- xg]

The same function, written using comprehension.
Notice the use of the pattern Left n to select only the values of this form.

dts
Typewritten Text
This built-in type can be used to get lists with values of different types
For instance, [Either Int Bool]

dts
Typewritten Text
A value of type Either a b is either a value of type a, wrapped up using Left,
or a value of type b, wrapped up using Right.

dts
Typewritten Text
A function to add all of the integers in a list of type [Either Int String],
ignoring the strings.

dts
Typewritten Text
The same function, written using comprehension.
Notice the use of the pattern Left n to select only the values of this form.

Eitheraor b

data Either a b = Left a | Right b

mylist :: [Either Int String]
mylist = [Left 4, Left 1, Right "hello", Left 2,
Right " ", Right "world", Left 17]

addstrs :: [Either Int String] —-> String

addstrs [] = "nn
addstrs (Left n : xs) = addstrs xs
addstrs (Right s : xs) = s ++ addstrs xs

A function to concatenate all of the strings in a list of type [Either Int String],
ignoring the integers.

addstrs’ :: [Either Int String] —-> String

addstrs’ xs = concat [s | Right s <- xs]

The same function written using comprehension.

These examples haven't shown:

- types with multiple parameters

- mutually recursive types

- functional types as arguments of constructors

dts
Typewritten Text
A function to concatenate all of the strings in a list of type [Either Int String],
ignoring the integers.

dts
Typewritten Text
The same function written using comprehension.

dts
Typewritten Text
These examples haven't shown:
- types with multiple parameters
- mutually recursive types
- functional types as arguments of constructors

Part V

Aside:
All sublists of a list

All sublists of a list

subs :: [a] —> [[a]]
subs [] = [[]]
subs (x:xs) = subs xs ++ [x:ys | ys <- subs xs]

All sublists of a list

subs []
= [[]]

subs ["b"]
= subs [] ++ ["b":ys | ys <- subs []]
= [[]1] ++t ["b":[]]
= [[I, ["b"]]

" " " n"]

subs ["a",
= subs ["b"] ++ ["a":ys | ys <— subs ["b"]]
— [[]’ ["b"]] ++ ["a":[], "a":["b"]]
= [[l, ["b"], ["a"], ["a","b"]]

Part VI

The Universal Type and Micro-Haskell

Optional material: an interpreter for a tiny subset of Haskell

dts
Typewritten Text
Optional material: an interpreter for a tiny subset of Haskell

The Universal Type and Micro-Haskell

data Univ = UBool Bool
| UInt Int
| UList [Univ]
| UFun (Univ —> Univ)

data Hask = HTrue

HFalse

HIf Hask Hask Hask
HLit Int

HEqg Hask Hask

HAdd Hask Hask
HVar Name

HLam Name Hask
HApp Hask Hask

type HEnv = [(Name, Univ)]

Show and Equality for Universal Type

showUniv Univ —-> String
showUniv (UBool b) = show b
showUniv (UInt 1) = show 1

showUniv (UList us) =
"[" ++ concat (intersperse "

eqUniv :: Univ -> Univ —-> Bool
eqUniv (UBool b) (UBool c) = Db == cC
eqUniv (UInt i) (UInt 7) = 1 ==]
eqUniv (UList us) (UList vs) =

and [egqUniv u v | (u,v) <— zlp us Vs
eqUniv u v = False

Can’t show functions or test them for equality.

4

(map showUniv us))

++

"] "

Micro-Haskell in Haskell

hEval Hask —-> HEnv —-> Univ

hEval HTrue r = UBool True

hEval HFalse r = UBool False

hEval (HIf c¢c d e) «r =
hif (hEval ¢ r) (hEval d r) (hEval e r)
where hif (UBool b) v w = 1if b then v else w

hEval (HLit 1) r = UlInt 1

hEval (HEg d e) r = heq (hEval d r) (hEval e r)
where heg (UInt i) (UInt j) = UBool (i == 73)

hFval (HAdd d e) r = hadd (hEval d r) (hEval e r)
where hadd (UInt 1) (UInt 3j) = UInt (1 + 73)

hEval (HVar x) r = lookUp r x

hEval (HLam x e) r = UFun (\ v —> hEval e ((x,V)

hEval (HApp d e) r = happ (hEval d r) (hEval e r)
where happ (UFun f) v = £ v

lookUp HEnv —-> Name -> Univ

lookUp x r = head [v | (y,Vv) <—- r, x ==]

1r))

Test data

hO =
(HApp

(HApp
(HLam "x" (HLam "y" (HAdd (HVar "x") (HVar "y"))))

(HLit 3))
(HLit 4))

test_h0 = eqUniv (hEval hO []) (UInt 7)

