
Informatics 1
Functional Programming Lecture 9

Algebraic Data Types

Don Sannella
University of Edinburgh

Part I

Algebraic types

dts
Typewritten Text
Algebraic types are the most important component of functional programming that I haven't covered yet.

dts
Typewritten Text
We've seen lots of types: integers, floating point numbers, characters, booleans.
Also ways of building types: lists, functions, tuples. All very useful, built in to Haskell.
We get lists of integers, lists of functions from integers to lists of booleans, etc.
An infinite number of types built in a finite number of ways.

dts
Typewritten Text
Algebraic types is about how to build new types in an INFINITE number of ways.
This is where most of those other types came from - you could define them yourself, if they weren't built in.

Everything is an algebraic type
data Bool = False | True
data Season = Winter | Spring | Summer | Fall
data Shape = Circle Float | Rectangle Float Float
data List a = Nil | Cons a (List a)
data Nat = Zero | Succ Nat
data Exp = Lit Int | Add Exp Exp | Mul Exp Exp
data Tree a = Empty | Leaf a | Branch (Tree a) (Tree a)
data Maybe a = Nothing | Just a
data Pair a b = Pair a b
data Either a b = Left a | Right b

dts
Typewritten Text
Here are 10 examples, defined completely in 10 lines.
Some you've seen already (Bool). List is [...] and Pair is 2-tuples, both with a different notation.
We'll look at them one at a time. The general case will emerge through the examples.

Part II

Boolean

dts
Typewritten Text
We'll start with a simple example: Booleans. Where do they come from?
What if I needed them and they weren't already in Haskell?

Boolean
data Bool = False | True

not :: Bool -> Bool
not False = True
not True = False

(&&) :: Bool -> Bool -> Bool
False && q = False
True && q = q

(||) :: Bool -> Bool -> Bool
False || q = q
True || q = True

dts
Typewritten Text
Bool: name of new type, needs to begin with uppercase letter.
Constructors False and True, need to begin with uppercase letter.
As many as you want, separated by a vertical bar.

dts
Typewritten Text
False and True are the only values of Bool, and they are different.
Then we can define new functions on Bool using pattern matching.

dts
Typewritten Text
These definitions are essentially the truth tables.

dts
Typewritten Text
True is the identify for &&

dts
Typewritten Text
False is the identify for ||

dts
Typewritten Text
These are just like the definitions you've been writing for functions on lists.
The difference is that we've defined the type ourselves, and patterns use the constructors in the type definition.

Boolean — eq and show
eqBool :: Bool -> Bool -> Bool
eqBool False False = True
eqBool False True = False
eqBool True False = False
eqBool True True = True

showBool :: Bool -> String
showBool False = "False"
showBool True = "True"

dts
Typewritten Text
Here's a definition of what it means for two
Bool values to be equal.
Four cases - just write them out.

dts
Typewritten Text
Defines how to display Bool values by converting
them to String.

dts
Typewritten Text
:: Bool :: String

Part III

Seasons

Seasons
data Season = Winter | Spring | Summer | Fall

next :: Season -> Season
next Winter = Spring
next Spring = Summer
next Summer = Fall
next Fall = Winter

dts
Typewritten Text
Bool had two constructors, Season has four.
Values are the four seasons.

dts
Typewritten Text
Function next tells you which Season comes next in the year.

Seasons—eq and show

eqSeason :: Season -> Season -> Bool
eqSeason Winter Winter = True
eqSeason Spring Spring = True
eqSeason Summer Summer = True
eqSeason Fall Fall = True
eqSeason x y = False

showSeason :: Season -> String
showSeason Winter = "Winter"
showSeason Spring = "Spring"
showSeason Summer = "Summer"
showSeason Fall = "Fall"

dts
Typewritten Text
Equality on Season - writing all combinations
requires 16 cases.
(No, you can't use repeated variables to abbreviate
the first 4 cases - not allowed in patterns.)

dts
Typewritten Text
Converting Season to printable values.

dts
Typewritten Text
There is a way to get Haskell to define these functions automatically - coming later ("type classes").
There is also a way to get Haskell to incorporate these functions into the built-in == and show functions.

Seasons and integers
data Season = Winter | Spring | Summer | Fall

toInt :: Season -> Int
toInt Winter = 0
toInt Spring = 1
toInt Summer = 2
toInt Fall = 3

fromInt :: Int -> Season
fromInt 0 = Winter
fromInt 1 = Spring
fromInt 2 = Summer
fromInt 3 = Fall

next :: Season -> Season
next x = fromInt ((toInt x + 1) ‘mod‘ 4)

eqSeason :: Season -> Season -> Bool
eqSeason x y = (toInt x == toInt y)

dts
Typewritten Text
These functions convert back and forth from Seasons to Int.
Notice, Seasons aren't REPRESENTED by Ints.
The constructors (Winter etc.) ARE the values.
No other representation is required.

dts
Typewritten Text
Then we can give a simpler definition of next.

dts
Typewritten Text
Ditto for equality.

Part IV

Shape

dts
Typewritten Text
Bool and Season were defined by enumerating their values, represented by constructors.
Shape is different - its constructors take values of another type as arguments.

Shape
type Radius = Float
type Width = Float
type Height = Float

data Shape = Circle Radius
| Rect Width Height

area :: Shape -> Float
area (Circle r) = pi * rˆ2
area (Rect w h) = w * h

dts
Typewritten Text
Here we define type SYNONYMS - a new name for an old type.
Just to help us remember what these numbers mean.
3.1 :: Float, also 3.1 :: Radius etc.

dts
Typewritten Text
A Shape is either a Circle with a radius,
or a Rect (rectangle) with a width and height.

dts
Typewritten Text
These constructors take arguments:
Circle takes one argument, Rect takes two.
The type definition gives the argument types.

dts
Typewritten Text
We define the area of a shape by giving the cases for circles and rectangles separately, using patterns.
This uses constructors for distinguishing between cases, variables for extracting values from data.

dts
Typewritten Text
Circle :: Radius -> Shape and Rect :: Width -> Height -> Shape are functions.

Shape—eq and show
eqShape :: Shape -> Shape -> Bool
eqShape (Circle r) (Circle r’) = (r == r’)
eqShape (Rect w h) (Rect w’ h’) = (w == w’) && (h == h’)
eqShape x y = False

showShape :: Shape -> String
showShape (Circle r) = "Circle " ++ showF r
showShape (Rect w h) = "Rect " ++ showF w ++ " " ++ showF h

showF :: Float -> String
showF x | x >= 0 = show x

| otherwise = "(" ++ show x ++ ")"

dts
Typewritten Text
Definitions of equality and show function on values of type Shape.
The show function uses a helper function to put parentheses around negative numbers.

Shape—tests and selectors
isCircle :: Shape -> Bool
isCircle (Circle r) = True
isCircle (Rect w h) = False

isRect :: Shape -> Bool
isRect (Circle r) = False
isRect (Rect w h) = True

radius :: Shape -> Float
radius (Circle r) = r

width :: Shape -> Float
width (Rect w h) = w

height :: Shape -> Float
height (Rect w h) = h

dts
Typewritten Text
Patterns with variables make it possible to write
function definitions very concisely.

dts
Typewritten Text
We can do without patterns if we define these functions.
isCircle and isRect for testing which kind of Shape,
radius, width and height for extracting values from Shapes.

Shape—pattern matching
area :: Shape -> Float
area (Circle r) = pi * rˆ2
area (Rect w h) = w * h

area :: Shape -> Float
area s =

if isCircle s then
let

r = radius s
in

pi * rˆ2
else if isRect s then

let
w = width s
h = height s

in
w * h

else error "impossible"

dts
Typewritten Text
Here is how we would have to write the area function if we use
those test and extraction functions instead of patterns. Yuck!

dts
Typewritten Text
This is the way the computer executes our 2-line definition earlier.

Part V

Lists

Lists
With declarations

data List a = Nil
| Cons a (List a)

append :: List a -> List a -> List a
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

With built-in notation

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

dts
Typewritten Text
List is a PARAMETRISED type - a type-level function, that takes a type as argument.
This gives us types that depend on other types.

dts
Typewritten Text
A value of type List a is either Nil (empty)
or Cons followed by a value of type a
and a value of type List a.
Note: RECURSION

dts
Typewritten Text
Now we can define append, and other functions on List.
Using recursion, just like the type definition uses recursion.

dts
Typewritten Text
Here's the same thing, using Haskell's built-in list notation.
List a = [a], Nil = []. Cons a l = a:l

Part VI

Natural numbers

Naturals
With names

data Nat = Zero
| Succ Nat

power :: Float -> Nat -> Float
power x Zero = 1.0
power x (Succ n) = x * power x n

With built-in notation

(ˆˆ) :: Float -> Int -> Float
x ˆˆ 0 = 1.0
x ˆˆ n = x * (x ˆˆ (n-1))

dts
Typewritten Text
Natural numbers (0, 1, 2, ...).
Recursive, like List, but not parametrised.

dts
Typewritten Text
nth power of a Float.

dts
Typewritten Text
Numbers in Haskell aren't defined this way! Imagine writing 1000000 as succ(...(succ Zero)...)
Haskell uses ordinary computer arithmetic.

Naturals
With declarations

add :: Nat -> Nat -> Nat
add m Zero = m
add m (Succ n) = Succ (add m n)

mul :: Nat -> Nat -> Nat
mul m Zero = Zero
mul m (Succ n) = add (mul m n) m

With built-in notation

(+) :: Int -> Int -> Int
m + 0 = m
m + n = (m + (n-1)) + 1

(*) :: Int -> Int -> Int
m * 0 = 0
m * n = (m * (n-1)) + m

dts
Typewritten Text
We can define addition and multiplication
in the same style.

dts
Typewritten Text
Here's what the same definitions would look like,
using Haskell's normal arithmetic notation.

