
Informatics 1
Functional Programming Lecture 8

Lambda expressions, functions and
binding

Don Sannella
University of Edinburgh

Part I

Lambda expressions

A failed attempt to simplify
f :: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))

where
sqr x = x * x
pos x = x > 0

The above cannot be simplified to the following:

f :: [Int] -> Int
f xs = foldr (+) 0 (map (x * x) (filter (x > 0) xs))

dts
Typewritten Text
Looking at the previous example (sum of squares of positive numbers):
can't I just write the bodies of sqr and pos "in place"?

dts
Typewritten Text
Computer says: "x is not in scope"
That is, it doesn't know what you mean by x.

dts
Typewritten Text
We need some way of saying: assuming that x is the argument, return x * x

A successful attempt to simplify
f :: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))

where
sqr x = x * x
pos x = x > 0

The above can be simplified to the following:

f :: [Int] -> Int
f xs = foldr (+) 0

(map (\x -> x * x)
(filter (\x -> x > 0) xs))

dts
Typewritten Text
\x -> x * x means: asasuming that x is the argument, return x * x
x is arbitrary - you could using any identifier, and it could be different for the two functions.

Lambda calculus
f :: [Int] -> Int
f xs = foldr (+) 0

(map (\x -> x * x)
(filter (\x -> x > 0) xs))

The character \ stands for λ, the Greek letter lambda.

Logicians write

\x -> x > 0 as λx. x > 0

\x -> x * x as λx. x× x.

Lambda calculus is due to the logician Alonzo Church (1903–1995).

dts
Typewritten Text
\ is the closest thing on the keyboard to lambda.
The lambda calculus is a theory of functions, that was designed before computers existed.

dts
Typewritten Text
Lambda expressions finally came to Java in 2014, only about 55 years after they came to functional programming.

Evaluating lambda expressions
(\x -> x > 0) 3

=
let x = 3 in x > 0

=
3 > 0

=
True

(\x -> x * x) 3
=

let x = 3 in x * x
=

3 * 3
=

9

dts
Typewritten Text
This is how you evaluate lambda-expressions. It's just a function, so (\x -> x > 0) 3 is 3 > 0
We can do that in 2 steps, by using
let x = 3 in ...
to express the passing of the argument to the function body.

Lambda expressions and currying
(\x -> \y -> x + y) 3 4

=
((\x -> (\y -> x + y)) 3) 4

=
(let x = 3 in \y -> x + y) 4

=
(\y -> 3 + y) 4

=
let y = 4 in 3 + y

=
3 + 4

=
7

dts
Typewritten Text
We can use this notation to express directly what currying is doing.
\y -> 3 + y is the function that is returned from \x -> \y -> x + y when it is applied to 3.

Evaluating lambda expressions
The general rule for evaluating lambda expressions is

(λx.N)M

=

(let x = M inN)

This is sometimes called the β rule (or beta rule).

dts
Typewritten Text
If you have a lambda-expression applied
to an argument ...

dts
Typewritten Text
... replace x by M when evaluating N

Part II

Sections

Sections
(> 0) is shorthand for (\x -> x > 0)

(2 *) is shorthand for (\x -> 2 * x)

(+ 1) is shorthand for (\x -> x + 1)

(2 ˆ) is shorthand for (\x -> 2 ˆ x)

(ˆ 2) is shorthand for (\x -> x ˆ 2)

dts
Typewritten Text
SECTIONS are a convenient shorthand for writing partially-applied functions.
A binary operator with an argument on the left or right, in parentheses.
Explained using lambda-expressions.
Where x goes depends on where the argument was - x goes in place of the missing argument.
It's the fact that these functions are curried that makes this work.

dts
Typewritten Text
exponentiation

dts
Typewritten Text
squaring

Sections
f :: [Int] -> Int
f xs = foldr (+) 0

(map (\x -> x * x)
(filter (\x -> x > 0) xs))

f :: [Int] -> Int
f xs = foldr (+) 0 (map (ˆ 2) (filter (> 0) xs))

dts
Typewritten Text
We can write the previous example really compactly using sections.

Part III

Composition

Composition
(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

dts
Typewritten Text
The composition operator is built in to Haskell.
Takes two functions and produces a function that does one and then the other.
Try to figure out why the type is as written above rather than
(a -> b) -> (b -> c) -> (a -> c)

Evaluating composition
(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

sqr :: Int -> Int
sqr x = x * x

pos :: Int -> Bool
pos x = x > 0

(pos . sqr) 3
=

pos (sqr 3)
=

pos 9
=

True

Compare and contrast

possqr :: Int -> Bool
possqr x = pos (sqr x)

possqr 3
=

pos (sqr 3)
=

pos 9
=

True

possqr :: Int -> Bool
possqr = pos . sqr

possqr 3
=

(pos . sqr) 3
=

pos (sqr 3)
=

pos 9
=

True

Composition is associative
(f . g) . h = f . (g . h)

((f . g) . h) x
=

(f . g) (h x)
=

f (g (h x))
=

f ((g . h) x)
=

(f . (g . h)) x

Thinking functionally
f :: [Int] -> Int
f xs = foldr (+) 0 (map (ˆ 2) (filter (> 0) xs))

f :: [Int] -> Int
f = foldr (+) 0 . map (ˆ 2) . filter (> 0)

dts
Typewritten Text
So I don't need to think about the argument xs at all.
I can write the earlier example using composition.
I don't need parentheses because composition is associative - it doesn't matter which way they are added.

Applying the function
f :: [Int] -> Int
f = foldr (+) 0 . map (ˆ 2) . filter (> 0)

f [1, -2, 3]
=

(foldr (+) 0 . map (ˆ 2) . filter (> 0)) [1, -2, 3]
=

foldr (+) 0 (map (ˆ 2) (filter (> 0) [1, -2, 3]))
=

foldr (+) 0 (map (ˆ 2) [1, 3])
=

foldr (+) 0 [1, 9]
=

10

dts
Typewritten Text
Here's how it works.

Part IV

Variables and binding

Variables
x = 2
y = x+1
z = x+y*y

*Main> z
11

dts
Typewritten Text
Here's a very simple Haskell program.
If you're used to C or Java or Visual Basic, you might think that x, y, z are boxes that you put values in.
Later you might change the value in the box using something like x = x + 1.
Not in functional programming!
This is BINDING, not ASSIGNMENT.
We say "x is bound to 2". x is just a name for 2. x means 2 throughout the program.

Part V

Lambda expressions explain binding

Lambda expressions explain binding
A variable binding can be rewritten using a lambda expression and an application:

(N where x = M)

=

(λx.N)M

=

(let x = M inN)

A function binding can be written using an application on the left or a lambda
expression on the right:

(M where f x = N)

=

(M where f = λx.N)

dts
Typewritten Text
Here is the key rule.
In both cases, we are replacing x in N by M

dts
Typewritten Text
We can write function definitions using lambda, too.
Everything in functional programming can be written using lambda.

Lambda expressions and binding constructs
f 2
where
f x = x+y*y

where
y = x+1

=
f 2
where
f = \x -> (x+y*y where y = x+1)

=
f 2
where
f = \x -> ((\y -> x+y*y) (x+1))

=
(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))

dts
Typewritten Text
Here's an example, expanding the wheres and the function bindings.
Everything turns into a big lambda-expression with application.

Evaluating lambda expressions
(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))

=
(\x -> ((\y -> x+y*y) (x+1))) 2

=
(\y -> 2+y*y) (2+1)

=
(\y -> 2+y*y) 3

=
2+3*3

=
11

dts
Typewritten Text
And we know how to evaluate lambda-expressions applied to argument: replace formal parameter by actual parameter.

dts
Typewritten Text
Everything in functional programming can be explained by lambda expressions.
You could view them as the assembly language of functional programming.

dts
Typewritten Text
Even lower level: COMBINATORS. All of lambda calculus can be boiled down to S and K, defined like this:
K x y = x
S x y z = (x z) (y z)
Combinators are like the quarks of computing.

