
Informatics 1
Functional Programming Lecture 7

Map, filter, fold

Don Sannella
University of Edinburgh



Part I

Map

dts
Typewritten Text
Now we're going to look at some examples of Haskell programs in an attempt to find common patterns.
Then we'll see how to generalise by writing a single Haskell program that has all of the examples as instances.



Squares
*Main> squares [1,-2,3]
[1,4,9]

squares :: [Int] -> [Int]
squares xs = [ x*x | x <- xs ]

squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) = x*x : squares xs

dts
Typewritten Text
Squares of the elements in a list, using comprehension

dts
Typewritten Text
... using recursion



Ords
*Main> ords "a2c3"
[97,50,99,51]

ords :: [Char] -> [Int]
ords xs = [ ord x | x <- xs ]

ords :: [Char] -> [Int]
ords [] = []
ords (x:xs) = ord x : ords xs

dts
Typewritten Text
Numerical codes of the characters in a list,
using comprehension

dts
Typewritten Text
... using recursion

dts
Typewritten Text
ord :: Char -> Int converts a character to its numerical code, for instance ord 'A' = 65



Map
map :: (a -> b) -> [a] -> [b]
map f xs = [ f x | x <- xs ]

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

dts
Typewritten Text
We can capture that pattern like this - first using comprehension, then the same thing using recursion.
There's a function, f, that we want to apply to every element of a list xs.
f :: a -> b, xs :: [a], result :: [b]
For squares, a and b are both Int. For ords, a is Char and b is Int.

dts
Typewritten Text
We call this map - it's built into Haskell's standard prelude (same as filter and foldr, coming up)



Squares, revisited
*Main> squares [1,-2,3]
[1,4,9]

squares :: [Int] -> [Int]
squares xs = [ x*x | x <- xs ]

squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) = x*x : squares xs

squares :: [Int] -> [Int]
squares xs = map sqr xs

where
sqr x = x*x

dts
Typewritten Text
Now we have THREE ways to define squares: using comprehension, using recursion, using map.
For squares, the function takes x to x*x, defined as a helper function using "where".



Map—how it works
map :: (a -> b) -> [a] -> [b]
map f xs = [ f x | x <- xs ]

map sqr [1,2,3]
=

[ sqr x | x <- [1,2,3] ]
=

[ sqr 1 ] ++ [ sqr 2 ] ++ [ sqr 3]
=

[1, 4, 9]

dts
Typewritten Text
Here's how squares written using map works, using the comprehension definition of map.
The main point is that f is replaced by sqr and then everything works just as before. 



Map—how it works
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

map sqr [1,2,3]
=

map sqr (1 : (2 : (3 : [])))
=

sqr 1 : map sqr (2 : (3 : []))
=

sqr 1 : (sqr 2 : map sqr (3 : []))
=

sqr 1 : (sqr 2 : (sqr 3 : map sqr []))
=

sqr 1 : (sqr 2 : (sqr 3 : []))
=

1 : (4 : (9 : []))
=

[1, 4, 9]

dts
Typewritten Text
Ditto, for the recursive definition of map.



Ords, revisited
*Main> ords "a2c3"
[97,50,99,51]

ords :: [Char] -> [Int]
ords xs = [ ord x | x <- xs ]

ords :: [Char] -> [Int]
ords [] = []
ords (x:xs) = ord x : ords xs

ords :: [Char] -> [Int]
ords xs = map ord xs

dts
Typewritten Text
Here is how ords is written using map.
The function is ord, which is already defined, so we don't need to define it ourselves.



Part II

Filter

dts
Typewritten Text
Another common pattern is extracting all of the elements of a list that have some property.



Positives
*Main> positives [1,-2,3]
[1,3]

positives :: [Int] -> [Int]
positives xs = [ x | x <- xs, x > 0 ]

positives :: [Int] -> [Int]
positives [] = []
positives (x:xs) | x > 0 = x : positives xs

| otherwise = positives xs

dts
Typewritten Text
Finding the positive numbers in a list
using comprehension

dts
Typewritten Text
... using recursion



Digits
*Main> digits "a2c3"
"23"

digits :: [Char] -> [Char]
digits xs = [ x | x <- xs, isDigit x ]

digits :: [Char] -> [Char]
digits [] = []
digits (x:xs) | isDigit x = x : digits xs

| otherwise = digits xs

dts
Typewritten Text
Finding the characters in a list that are
digits ('0' to '9'), using comprehension

dts
Typewritten Text
... using recursion



Filter
filter :: (a -> Bool) -> [a] -> [a]
filter p xs = [ x | x <- xs, p x ]

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

dts
Typewritten Text
Filter takes a PREDICATE p (a function producing a result of type Bool)
which says whether or not an element in the list belongs to the result.

dts
Typewritten Text
The predicate is used as a guard in both the comprehension and the recursive definitions of filter.



Positives, revisited
*Main> positives [1,-2,3]
[1,3]

positives :: [Int] -> [Int]
positives xs = [ x | x <- xs, x > 0 ]

positives :: [Int] -> [Int]
positives [] = []
positives (x:xs) | x > 0 = x : positives xs

| otherwise = positives xs

positives :: [Int] -> [Int]
positives xs = filter pos xs

where
pos x = x > 0

dts
Typewritten Text
Now we can define positives in a third way, using filter.



Digits, revisited
*Main> digits "a2c3"
"23"

digits :: [Char] -> [Char]
digits xs = [ x | x <- xs, isDigit x ]

digits :: [Char] -> [Char]
digits [] = []
digits (x:xs) | isDigit x = x : digits xs

| otherwise = digits xs

digits :: [Char] -> [Char]
digits xs = filter isDigit xs

dts
Typewritten Text
Likewise for digits, using the built-in isDigit function.


dts
Typewritten Text
The predicate can be as complicated as you want. You just need to define it as a function.



Part III

Fold



Sum
*Main> sum [1,2,3,4]
10

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

dts
Typewritten Text
Sum of a list of integers. sum [] = 0, because 0 is the identity for +.



Product
*Main> product [1,2,3,4]
24

product :: [Int] -> Int
product [] = 1
product (x:xs) = x * product xs

dts
Typewritten Text
Product of a list of integers. product [] = 1, because 1 is the identity for *.



Concatenate
*Main> concat [[1,2,3],[4,5]]
[1,2,3,4,5]

*Main> concat ["con","cat","en","ate"]
"concatenate"

concat :: [[a]] -> [a]
concat [] = []
concat (xs:xss) = xs ++ concat xss

dts
Typewritten Text
Concatenate a list of lists by appending the head (a list) to the result of concatenating all of the lists in the tail.
concat [] = [] because [] is the identity for ++.



Foldr
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f v [] = v
foldr f v (x:xs) = f x (foldr f v xs)

dts
Typewritten Text
Here's the pattern. We take TWO things:
- a binary function f :: a -> a -> a
- a value v :: a (which is often the identity for f)
and return the result of combining the elements using f, with v as the result when we get to the end.
Think of v as the STARTING VALUE for combining the elements using f.



Foldr, with infix notation
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f v [] = v
foldr f v (x:xs) = x ‘f‘ (foldr f v xs)

dts
Typewritten Text
It might be easier to understand when f is written in infix.

dts
Typewritten Text
sum [a1, ..., an] = a1 + ... + an + 0
product [a1, ..., an] = a1 * ... * an * 1
concat [xs1, ..., xsn] = xs1 ++ ... ++ xsn ++ []
foldr f v [x1, ..., xn] = x1 `f` ... `f` xn `f` v



Sum, revisited
*Main> sum [1,2,3,4]
10

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

Recall that (+) is the name of the addition function,
so x + y and (+) x y are equivalent.

dts
Typewritten Text
Here is sum defined using foldr. f is (+), v is 0.



Sum, Product, Concat
sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

product :: [Int] -> Int
product xs = foldr (*) 1 xs

concat :: [[a]] -> [a]
concat xs = foldr (++) [] xs

dts
Typewritten Text
Similarly with product and concat.



Sum—how it works
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2]
=

sum (1 : (2 : []))
=

1 + sum (2 : [])
=

1 + (2 + sum [])
=

1 + (2 + 0)
=

3

dts
Typewritten Text
Here's how sum works using the recursive definition of sum.



Sum—how it works, revisited
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f v [] = v
foldr f v (x:xs) = x ‘f‘ (foldr f v xs)

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

sum [1,2]
=

foldr (+) 0 [1,2]
=

foldr (+) 0 (1 : (2 : []))
=

1 + (foldr (+) 0 (2 : []))
=

1 + (2 + (foldr (+) 0 []))
=

1 + (2 + 0)
=

3

dts
Typewritten Text
Here's how sum works using the definition of sum in terms of foldr.



dts
Typewritten Text
foldr means "fold, bracketing to the RIGHT"
sum [x1, x2, ..., xn] = x1 + (x2 + ( ... + (xn + 0) ... ))
foldr f v [x1, x2, ..., xn] = x1 `f` (x2 `f` ( ... `f` (xn `f` v) ... ))


dts
Typewritten Text
As a diagram:                 :        -> foldr f v ->        f
                                     /   \                                 /   \
                                   x1    :                             x1    f
                                         /   \                                 /   \ 
                                       x2   ...                           x2    ...
                                                \                                     \
                                                  :                                     f
                                                /   \                                 /   \
                                              xn    [ ]                           xn    v

dts
Typewritten Text
If f is associative, it doesn't matter that it brackets to the right.
If f isn't associative, the result is different if you bracket to the left.
There is a function (foldl) that does that. Try to define it - answer in the book.

dts
Typewritten Text
Also: foldr's type is more general than I've indicated. See if you can figure it out. Answer in the book.
Hint: consider v :: b and xs :: [a]. What type does f need to have?

dts
Typewritten Text
foldr is called "reduce" in some other functional languages.
Google's Mapreduce, for doing distributed computing in warehouses full of servers, is a combination of map and foldr.
Cf Apache's Hadoop.



Part IV

Map, Filter, and Fold
All together now!



Sum of Squares of Positives
f :: [Int] -> Int
f xs = sum (squares (positives xs))

f :: [Int] -> Int
f xs = sum [ x*x | x <- xs, x > 0 ]

f :: [Int] -> Int
f [] = []
f (x:xs)

| x > 0 = (x*x) + f xs
| otherwise = f xs

f :: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))

where
sqr x = x * x
pos x = x > 0

dts
Typewritten Text
Definition by combining functions

dts
Typewritten Text
... or using comprehension

dts
Typewritten Text
... or using recursion

dts
Typewritten Text
... or using foldr, map and filter

dts
Typewritten Text
Functions like map, filter and foldr are called HIGHER ORDER FUNCTIONS: they take other functions as arguments.
Functions that don't do this are called FIRST ORDER FUNCTIONS.


dts
Typewritten Text
Functional programming is about defining functions, but also about (like here) using functions as data.
This gives surprising power!



Part V

Currying

dts
Typewritten Text
If a function takes two arguments, we write
f :: t -> s -> v
and we apply f by writing
f x y
Now it's time to explain why.



How to add two numbers
add :: Int -> Int -> Int
add x y = x + y

add 3 4
=

3 + 4
=

7

dts
Typewritten Text
Consider the function add. Where are the implicit parentheses?
That is, how does Haskell group the parts of the type and the function definition?



How to add two numbers
add :: Int -> (Int -> Int)
(add x) y = x + y

(add 3) 4
=

3 + 4
=

7

A function of two numbers
is the same as

a function of the first number that returns
a function of the second number.

dts
Typewritten Text
Here they are.
-> associates to the right
function application associates to the left.
(This matches - think about it!)
add applied to 3, applied to 4

dts
Typewritten Text
add 3 makes sense by itself - it's the function that adds 3 to things
This shows how we can define 2-argument functions in terms of 1-argument functions.



Currying
add :: Int -> (Int -> Int)
add x = g

where
g y = x + y

(add 3) 4
=

g 4
where
g y = 3 + y

=
3 + 4

=
7

A function of two numbers
is the same as

a function of the first number that returns
a function of the second number.

dts
Typewritten Text
Here's the same thing written in a different way.
The result of applying add to x is now an explicitly-defined function.



Currying
add :: Int -> Int -> Int
add x y = x + y

means the same as

add :: Int -> (Int -> Int)
add x = g

where
g y = x + y

and

add 3 4

means the same as

(add 3) 4

This idea is named for Haskell Curry (1900–1982).
It also appears in the work of Moses Schönfinkel (1889–1942),

and Gottlob Frege (1848–1925).

dts
Typewritten Text
This is not functions taking functions AS ARGUMENTS
but functions returning functions AS RESULTS.

dts
Typewritten Text
Currying: transforming a 2-argument function into a 1-argument function that produces a 1-argument function.
Uncurrying is the opposite.



Putting currying to work
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f v [] = v
foldr f v (x:xs) = f x (foldr f v xs)

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

is equivalent to

foldr :: (a -> a -> a) -> a -> ([a] -> a)
foldr f v [] = v
foldr f v (x:xs) = f x (foldr f v xs)

sum :: [Int] -> Int
sum = foldr (+) 0

dts
Typewritten Text
foldr (+) 0 is a function taking xs to the result

dts
Typewritten Text
The point here is not that we can save 4 characters when defining sum.
The point is that we can PARTIALLY APPLY functions.



Compare and contrast
sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

sum [1,2,3,4]
=

foldr (+) 0 [1,2,3,4]

sum :: [Int] -> Int
sum = foldr (+) 0

sum [1,2,3,4]
=

(foldr (+) 0) [1,2,3,4]



Sum, Product, Concat
sum :: [Int] -> Int
sum = foldr (+) 0

product :: [Int] -> Int
product = foldr (*) 1

concat :: [[a]] -> [a]
concat = foldr (++) []

dts
Typewritten Text
Here is the same thing applied to the earlier definitions of functions using foldr.
This is sometimes called POINTLESS or POINT-FREE style.
(In contrast to POINTED style, referring to definitions in terms of "points" in the space of possible arguments.)




