
Informatics 1
Functional Programming Lecture 6

More fun with recursion

Don Sannella
University of Edinburgh

Part I

Counting

dts
Typewritten Text
Now we'll look at functional programming techniques used to solve certain kinds of problems that arise frequently.On the way we'll see some new patterns of recursion.

Counting
Prelude [1..3]
[1,2,3]
Prelude enumFromTo 1 3
[1,2,3]

[m..n] stands for enumFromTo m n

Recursion

enumFromTo :: Int -> Int -> [Int]
enumFromTo m n | m > n = []

| m <= n = m : enumFromTo (m+1) n

dts
Typewritten Text
Recall this notation for the list of numbers from 1 to 3.

dts
Typewritten Text
Everything in Haskell is a function, and this is the function thatis used to give the result of [m..n]

dts
Typewritten Text
Recursion again, but on numbers this time - counting up from m to n.

How enumFromTo works (recursion)
enumFromTo :: Int -> Int -> [Int]
enumFromTo m n | m > n = []

| m <= n = m : enumFromTo (m+1) n

enumFromTo 1 3
=

1 : enumFromTo 2 3
=

1 : (2 : enumFromTo 3 3)
=

1 : (2 : (3 : enumFromTo 4 3))
=

1 : (2 : (3 : []))
=

[1,2,3]

dts
Typewritten Text
Here's how it works.Before, the list was getting smaller on each recursive call.Now, the number is getting larger - what's going on?The point is that the DIFFERENCE between m and n is getting smaller.It's essential that something gets smaller - otherwise the recursion will never terminate.

Factorial
Main*> factorial 3

Library functions

factorial :: Int -> Int
factorial n = product [1..n]

Recursion

factorialRec :: Int -> Int
factorialRec n = fact 1 n

where
fact :: Int -> Int -> Int
fact m n | m > n = 1

| m <= n = m * fact (m+1) n

dts
Typewritten Text
We use a HELPER FUNCTIONto compute the product of [m..n]

dts
Typewritten Text
This is the same pattern as for enumFromTo,using * instead of :(There are simpler definitions of factorial, withouta helper function - try it!)

How factorial works (recursion)
factorialRec :: Int -> Int
factorialRec n = fact 1 n

where
fact :: Int -> Int -> Int
fact m n | m > n = 1

| m <= n = m * fact (m+1) n

factorialRec 3
=

fact 1 3
=

1 * fact 2 3
=

1 * (2 * fact 3 3)
=

1 * (2 * (3 * fact 4 3))
=

1 * (2 * (3 * 1))
=

6

dts
Typewritten Text
Here's how it works.k

Counting forever!
Prelude [0..]
[0,1,2,3,4,5,...
Prelude enumFrom 0
[0,1,2,3,4,5,...

[m..] stands for enumFrom m

Recursion

enumFrom :: Int -> [Int]
enumFrom m = m : enumFrom (m+1)

dts
Typewritten Text
Haskell represents the head and tail of a list asunevaluated EXPRESSIONS.Evaluation happens when you need the value, not before.This is called LAZY EVALUATION.The alternative is called EAGER EVALUATION.

dts
Typewritten Text
Lazy evaluation makes it possible to operate on INFINITE DATA STRUCTURESprovided you never need all of the values - just enough to compute some result.

How enumFrom works (recursion)
enumFrom :: Int -> [Int]
enumFrom m = m : enumFrom (m+1)

enumFrom 0
=

0 : enumFrom 1
=

0 : (1 : enumFrom 2)
=

0 : (1 : (2 : enumFrom 3))
=

...
=

[0,1,2,... -- computation goes on forever!

Part II

Zip and search

Zip
zip :: [a] -> [b] -> [(a,b)]
zip [] ys = []
zip xs [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip [0,1,2] "abc"
=

(0,’a’) : zip [1,2]"bc"
=

(0,’a’) : ((1,’b’) : zip [2] "c")
=

(0,’a’) : ((1,’b’) : ((2,’c’) : zip [] ""))
=

(0,’a’) : ((1,’b’) : ((2,’c’) : []))
=

[(0,’a’),(1,’b’),(2,’c’)]

dts
Typewritten Text
Zip: like a zipper, but not interleaving the "teeth".Defined using simultaneous recursion on both lists.

dts
Typewritten Text
If the two lists are different lengths,it truncates the longer one.

dts
Typewritten Text
Here's how it works.Processing two lists, possibly of different types, in lock step, returning a list of pairs.

Two alternative definitions of zip
Liberal

zip :: [a] -> [b] -> [(a,b)]
zip [] ys = []
zip xs [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

Conservative

zipHarsh :: [a] -> [b] -> [(a,b)]
zipHarsh [] [] = []
zipHarsh (x:xs) (y:ys) = (x,y) : zipHarsh xs ys

dts
Typewritten Text
The "conservative" version only works if both lists are the same length.Otherwise it gives an error.The liberal version is the one that is built into Haskell.

Lists of different lengths
Prelude> zip [0,1,2] "abc"
[(0,’a’),(1,’b’),(2,’c’)]

Prelude> zipHarsh [0,1,2] "abc"
[(0,’a’),(1,’b’),(2,’c’)]

Prelude> zip [0,1,2] "abcde"
[(0,’a’),(1,’b’),(2,’c’)]

Prelude> zipHarsh [0,1,2] "abcde"
[(0,’a’),(1,’b’),(2,’c’)*** Exception:
Non-exhaustive patterns in function zipHarsh

Prelude> zip [0,1,2,3,4] "abc"
[(0,’a’),(1,’b’),(2,’c’)]

Prelude> zipHarsh [0,1,2,3,4] "abc"
[(0,’a’),(1,’b’),(2,’c’)*** Exception:
Non-exhaustive patterns in function zipHarsh

More fun with zip
Prelude> zip [0..] "words"
[(0,’w’),(1,’o’),(2,’r’),(3,’d’),(4,’s’)]

Prelude> let pairs xs = zip xs (tail xs)
Prelude> pairs "words"
[(’w’,’o’),(’o’,’r’),(’r’,’d’),(’d’,’s’)]

dts
Typewritten Text
The way that zip treats lists of different lengths is very convenient - it allows us to play tricks like these.

dts
Typewritten Text
The first example pairs characters with their positions in the list, counting from 0.It treats [0..] as if it is [0..(length "words" - 1)] without needing to produce that list explicitly.

dts
Typewritten Text
The second example is a useful trick for when you want to relate successive elements of a list.For example, counting the number of doubled letters in a string could be done this way.

Zip with an infinite list
zip :: [a] -> [b] -> [(a,b)]
zip [] ys = []
zip xs [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip [0..] "abc"
=

(0,’a’) : zip [1..] "bc"
=

(0,’a’) : ((1,’b’) : zip [2..] "c")
=

(0,’a’) : ((1,’b’) : ((2,’c’) : zip [3..] ""))
=

(0,’a’) : ((1,’b’) : ((2,’c’) : zip (3 : [4..]) ""))
=

(0,’a’) : ((1,’b’) : ((2,’c’) : []))
=

[(0,’a’),(1,’b’),(2,’c’)]

Computer can determine (3 : [4..]) 6= [] without computing [4..].

Dot product of two lists
Comprehensions and library functions

dot :: Num a => [a] -> [a] -> a
dot xs ys = sum [x*y | (x,y) <- zipHarsh xs ys]

Recursion

dotRec :: Num a => [a] -> [a] -> a
dotRec [] [] = 0
dotRec (x:xs) (y:ys) = x*y + dotRec xs ys

dts
Typewritten Text
This example is from linear algebra - dot product is also known as "scalar product".Given two vectors of equal length, it gives the sum of the product of corresponding components.

dts
Typewritten Text
"Num a" in these types means that these functions only work when a is a numerical type - will be explained later.

How dot product works (comprehension)
dot :: Num a => [a] -> [a] -> a
dot xs ys = sum [x*y | (x,y) <- zip xs ys]

dot [2,3,4] [5,6,7]
=

sum [x*y | (x,y) <- zip [2,3,4] [5,6,7]]
=

sum [x*y | (x,y) <- [(2,5), (3,6), (4,7)]]
=

sum [2*5, 3*6, 4*7]
=

sum [10, 18, 28]
=

56

How dot product works (recursion)
dotRec :: Num a => [a] -> [a] -> a
dotRec [] [] = 0
dotRec (x:xs) (y:ys) = x*y + dotRec xs ys

dotRec [2,3,4] [5,6,7]
=

dotRec (2:(3:(4:[]))) (5:(6:(7:[])))
=

2*5 + dotRec (3:(4:[])) (6:(7:[]))
=

2*5 + (3*6 + dotRec (4:[]) (7:[]))
=

2*5 + (3*6 + (4*7 + dotRec [] []))
=

2*5 + (3*6 + (4*7 + 0))
=

10 + (18 + (28 + 0))
=

56

Search
Main*> search "bookshop" ’o’
[1,2,6]

Comprehensions and library functions

search :: Eq a => [a] -> a -> [Int]
search xs y = [i | (i,x) <- zip [0..] xs, x==y]

Recursion

searchRec :: Eq a => [a] -> a -> [Int]
searchRec xs y = srch xs y 0

where
srch :: Eq a => [a] -> a -> Int -> [Int]
srch [] y i = []
srch (x:xs) y i

| x == y = i : srch xs y (i+1)
| otherwise = srch xs y (i+1)

dts
Typewritten Text
Return a list of all of the positions that a character occurs in a string.

dts
Typewritten Text
"Eq a" in the type means that equality needs to work on the type a.

dts
Typewritten Text
Search is easy to define with comprehension using zip: return every i where (i,x) is drawn from zip [0..] xs and x==y.Recursively: use a helper function. i is the index of the position of the start of the list we're searching through.

How search works (comprehension)
search :: Eq a => [a] -> a -> [Int]
search xs y = [i | (i,x) <- zip [0..] xs, x==y]

search "book" ’o’
=

[i | (i,x) <- zip [0..] "book", x==’o’]
=

[i | (i,x) <- [(0,’b’),(1,’o’),(2,’o’),(3,’k’)], x==’o’]
=

[0|’b’==’o’]++[1|’o’==’o’]++[2|’o’==’o’]++[3|’k’==’o’]
=

[]++[1]++[2]++[]
=

[1,2]

How search works (recursion)
searchRec xs y = srch xs y 0

where
srch [] y i = []
srch (x:xs) y i | x == y = i : srch xs y (i+1)

| otherwise = srch xs y (i+1)

searchRec "book" ’o’
=

srch "book" ’o’ 0
=

srch "ook" ’o’ 1
=

1 : srch "ok" ’o’ 2
=

1 : (2 : srch "k" ’o’ 3)
=

1 : (2 : srch "" ’o’ 4)
=

1 : (2 : [])
=

[1,2]

