
Informatics 1
Functional Programming Lecture 4

Lists and Recursion

Don Sannella
University of Edinburgh

Part I

Lists and Recursion

dts
Typewritten Text
List comprehension is for "whoosh"-style programming.
Recursion is for "element-at-a-time" programming - like loops in other languages.
Before looking recursion, it's necessary to understand lists better.

Cons and append
Cons takes an element and a list.
Append takes two lists.

(:) :: a -> [a] -> [a]
(++) :: [a] -> [a] -> [a]

1 : [2,3] = [1,2,3]
[1] ++ [2,3] = [1,2,3]
[1,2] ++ [3] = [1,2,3]
’l’ : "ist" = "list"
"l" ++ "ist" = "list"
"li" ++ "st" = "list"

[1] : [2,3] -- type error!
1 ++ [2,3] -- type error!
[1,2] ++ 3 -- type error!
"l" : "ist" -- type error!
’l’ ++ "ist" -- type error!

(:) is pronounced cons, for construct
(++) is pronounced append

dts
Typewritten Text
Cons (:) puts ONE ELEMENT on the front of a list.
Append (++) puts TWO LISTS together, end to end.
Notice that the types are different!
a can stand for any type.

dts
Typewritten Text
: and ++ are INFIX functions - written between its arguments.
(:) is a PREFIX version of :
So 1 : [2,3] is the same as (:) 1 [2,3]
Likewise for ++ and (++), and any infix function.

Lists
Every list can be written using only (:) and [].

[1,2,3] = 1 : (2 : (3 : []))

"list" = [’l’,’i’,’s’,’t’]
= ’l’ : (’i’ : (’s’ : (’t’ : [])))

A recursive definition: A list is either

• empty, written [], or

• constructed, written x:xs, with head x (an element), and tail xs (a list).

dts
Typewritten Text
Cons (:) is special: any list can be written using : and [], in only one way.

dts
Typewritten Text
Notice: the definition of lists is SELF-REFERENTIAL.
It is a WELL-FOUNDED definition because it defines a complicated list, x:xs, in terms of a simpler list, xs,
and ultimately in terms of the simplest list of all, [].

A list of numbers
Prelude> null [1,2,3]
False
Prelude> head [1,2,3]
1
Prelude> tail [1,2,3]
[2,3]
Prelude> null [2,3]
False
Prelude> head [2,3]
2
Prelude> tail [2,3]
[3]
Prelude> null [3]
False
Prelude> head [3]
3
Prelude> tail [3]
[]
Prelude> null []
True

dts
Typewritten Text
null :: [a] -> Bool tells if a list is empty or not.
head :: [a] -> a gives the first element in a list.
tail :: [a] -> [a] gives the remainder of a list, after the first element.

Part II

Mapping: Square every element of a list

Two styles of definition—squares
Comprehension

squares :: [Int] -> [Int]
squares xs = [x*x | x <- xs]

Recursion

squaresRec :: [Int] -> [Int]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

dts
Typewritten Text
This shows two ways of writing the same function (squares of the numbers in a list).
The second version is RECURSIVE: it defines squaresRec in terms of itself.
The definition is well-founded because:
 - squaresRec (x:xs) is defined in terms of squaresRec xs - xs is simpler than x:xs.
 - this reduces squaresRec eventually to squaresRec [], the BASE CASE, which is not recursive.

dts
Typewritten Text
The recursive definition of squaresRec has two cases, just like the recursive definition of lists.

Pattern matching and conditionals
Pattern matching

squaresRec :: [Int] -> [Int]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

Conditionals with binding

squaresCond :: [Int] -> [Int]
squaresCond ws =

if null ws then
[]

else
let
x = head ws
xs = tail ws

in
x*x : squaresCond xs

dts
Typewritten Text
We use PATTERN MATCHING to discriminate cases
and to extract the components of a constructed list.
Notice the correspondence to the definition of lists.

dts
Typewritten Text
This is exactly the same, written without using pattern matching.

How recursion works—squaresRec
squaresRec :: [Int] -> [Int]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]

dts
Typewritten Text
Here's an example - we'll look at the
computation, step by step.

How recursion works—squaresRec
squaresRec :: [Int] -> [Int]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))

dts
Typewritten Text
This is what [1,2,3] means.

How recursion works—squaresRec
squaresRec :: [Int] -> [Int]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
= { x = 1, xs = (2 : (3 : [])) }

1*1 : squaresRec (2 : (3 : []))

dts
Typewritten Text
Does the first equation apply? No
Does the second equation apply? Yes! It matches if x=1 and xs= (2:(3:[])).
We replace the expression on the left-hand side of the equation with the expression on the right-hand side.

How recursion works—squaresRec
squaresRec :: [Int] -> [Int]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
=

1*1 : squaresRec (2 : (3 : []))
= { x = 2, xs = (3 : []) }

1*1 : (2*2 : squaresRec (3 : []))

dts
Typewritten Text
The same thing applies to the expression squaresRec (2 : (3 : [])).

How recursion works—squaresRec
squaresRec :: [Int] -> [Int]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
=

1*1 : squaresRec (2 : (3 : []))
=

1*1 : (2*2 : squaresRec (3 : []))
= { x = 3, xs = [] }

1*1 : (2*2 : (3*3 : squaresRec []))

dts
Typewritten Text
Likewise for the expression squaresRec (3 : []).

How recursion works—squaresRec
squaresRec :: [Int] -> [Int]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
=

1*1 : squaresRec (2 : (3 : []))
=

1*1 : (2*2 : squaresRec (3 : []))
=

1*1 : (2*2 : (3*3 : squaresRec []))
=

1*1 : (2*2 : (3*3 : []))

dts
Typewritten Text
Now the first equation finally applies.

How recursion works—squaresRec
squaresRec :: [Int] -> [Int]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
=

1*1 : squaresRec (2 : (3 : []))
=

1*1 : (2*2 : squaresRec (3 : []))
=

1*1 : (2*2 : (3*3 : squaresRec []))
=

1*1 : (2*2 : (3*3 : []))
=

1 : (4 : (9 : []))

dts
Typewritten Text
We can do the multiplications. (We could have done them earlier.)

How recursion works—squaresRec
squaresRec :: [Int] -> [Int]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
=

1*1 : squaresRec (2 : (3 : []))
=

1*1 : (2*2 : squaresRec (3 : []))
=

1*1 : (2*2 : (3*3 : squaresRec []))
=

1*1 : (2*2 : (3*3 : []))
=

1 : (4 : (9 : []))
=

[1,4,9]

dts
Typewritten Text
Here is the same thing, written using list notation.

QuickCheck
-- squares.hs
import Test.QuickCheck

squares :: [Int] -> [Int]
squares xs = [x*x | x <- xs]

squaresRec :: [Int] -> [Int]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

prop_squares :: [Int] -> Bool
prop_squares xs = squares xs == squaresRec xs

[jitterbug]dts: ghci squares.hs
GHCi, version 7.6.3: http://www.haskell.org/ghc/ :? for help

*Main> quickCheck prop_squares
+++ OK, passed 100 tests.

*Main>

dts
Typewritten Text
We can use QuickCheck to check that both definitions compute the same function.

Part III

Filtering: Select odd elements from a list

Two styles of definition—odds
Comprehension

odds :: [Int] -> [Int]
odds xs = [x | x <- xs, odd x]

Recursion

oddsRec :: [Int] -> [Int]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

dts
Typewritten Text
We can use GUARDS in recursive definitions too - here is the notation.
otherwise is just another name for True.
Haskell checks the cases in order to decide which to use.

Pattern matching and conditionals
Pattern matching with guards

oddsRec :: [Int] -> [Int]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

Conditionals with binding
oddsCond :: [Int] -> [Int]
oddsCond ws =

if null ws then
[]

else
let
x = head ws
xs = tail ws

in
if odd x then

x : oddsCond xs
else

oddsCond xs

dts
Typewritten Text
Again, you can do it without pattern matching
and with if-then-else instead of guards.

How recursion works—oddsRec
oddsRec :: [Int] -> [Int]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]

dts
Typewritten Text
Again, let's look at an example of computation, step by step.

How recursion works—oddsRec
oddsRec :: [Int] -> [Int]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))

dts
Typewritten Text
This is what [1,2,3] means.

How recursion works—oddsRec
oddsRec :: [Int] -> [Int]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))
= { x = 1, xs = (2 : (3 : [])), odd 1 = True }

1 : oddsRec (2 : (3 : []))

dts
Typewritten Text
The second equation applies, with x=1 and xs = 2:(3:[]). And then the first guard is satisfied.

How recursion works—oddsRec
oddsRec :: [Int] -> [Int]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))
=

1 : oddsRec (2 : (3 : []))
= { x = 2, xs = (3 : []), odd 2 = False }

1 : oddsRec (3 : [])

dts
Typewritten Text
The same thing applies to the expression oddsRec (2 : (3 : [])).
This time the second guard is satisfied.

How recursion works—oddsRec
oddsRec :: [Int] -> [Int]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))
=

1 : oddsRec (2 : (3 : []))
=

1 : oddsRec (3 : [])
= { x = 3, xs = [], odd 3 = True }

1 : (3 : oddsRec [])

dts
Typewritten Text
Likewise for the expression oddsRec (3 : []). The first guard is satisfied.

How recursion works—oddsRec
oddsRec :: [Int] -> [Int]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))
=

1 : oddsRec (2 : (3 : []))
=

1 : oddsRec (3 : [])
=

1 : (3 : oddsRec [])
=

1 : (3 : [])

dts
Typewritten Text
Now the first equation finally applies.

How recursion works—oddsRec
oddsRec :: [Int] -> [Int]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))
=

1 : oddsRec (2 : (3 : []))
=

1 : oddsRec (3 : [])
=

1 : (3 : oddsRec [])
=

1 : (3 : [])
=

[1,3]

QuickCheck
-- odds.hs
import Test.QuickCheck

odds :: [Int] -> [Int]
odds xs = [x | x <- xs, odd x]

oddsRec :: [Int] -> [Int]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

prop_odds :: [Int] -> Bool
prop_odds xs = odds xs == oddsRec xs

[jitterbug]dts: ghci odds.hs
GHCi, version 7.6.3: http://www.haskell.org/ghc/ :? for help

*Main> quickCheck prop_odds
+++ OK, passed 100 tests.

*Main>

Part IV

Accumulation: Sum a list

Sum
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]

dts
Typewritten Text
Here is an example that can't be done using comprehension.
(sum is built into Haskell - we don't need to define it ourselves.)

dts
Typewritten Text
Computing this example step by step.

Sum
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))

Sum
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))
= {x = 1, xs = (2 : (3 : []))}

1 + sum (2 : (3 : []))

Sum
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))
=

1 + sum (2 : (3 : []))
= {x = 2, xs = (3 : [])}

1 + (2 + sum (3 : []))

Sum
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))
=

1 + sum (2 : (3 : []))
=

1 + (2 + sum (3 : []))
= {x = 3, xs = []}

1 + (2 + (3 + sum []))

Sum
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))
=

1 + sum (2 : (3 : []))
=

1 + (2 + sum (3 : []))
=

1 + (2 + (3 + sum []))
=

1 + (2 + (3 + 0))

Sum
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))
=

1 + sum (2 : (3 : []))
=

1 + (2 + sum (3 : []))
=

1 + (2 + (3 + sum []))
=

1 + (2 + (3 + 0))
=

6

Product
product :: [Int] -> Int
product [] = 1
product (x:xs) = x * product xs

product [1,2,3]
=

product (1 : (2 : (3 : [])))
=

1 * product (2 : (3 : []))
=

1 * (2 * product (3 : []))
=

1 * (2 * (3 * product []))
=

1 * (2 * (3 * 1))
=

6

dts
Typewritten Text
Similarly for product, also a built-in function.

Part V

Putting it all together:
Sum of the squares of the odd numbers in a list

Two styles of definition
Comprehension

sumSqOdd :: [Int] -> Int
sumSqOdd xs = sum [x*x | x <- xs, odd x]

Recursion

sumSqOddRec :: [Int] -> Int
sumSqOddRec [] = 0
sumSqOddRec (x:xs) | odd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

dts
Typewritten Text
Here's a recursive definition of the sum of the squares of the odd numbers in a list.

How recursion works—sumSqOddRec
sumSqOddRec :: [Int] -> Int
sumSqOddRec [] = 0
sumSqOddRec (x:xs) | odd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

sumSqOddRec [1,2,3]

dts
Typewritten Text
Computing this example step by step.

How recursion works—sumSqOddRec
sumSqOddRec :: [Int] -> Int
sumSqOddRec [] = 0
sumSqOddRec (x:xs) | odd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

sumSqOddRec [1,2,3]
=

sumSqOddRec (1 : (2 : (3 : [])))

How recursion works—sumSqOddRec
sumSqOddRec :: [Int] -> Int
sumSqOddRec [] = 0
sumSqOddRec (x:xs) | odd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

sumSqOddRec [1,2,3]
=

sumSqOddRec (1 : (2 : (3 : [])))
= { x = 1, xs = (2 : (3 : [])), odd 1 = True }

1*1 + sumSqOddRec (2 : (3 : []))

How recursion works—sumSqOddRec
sumSqOddRec :: [Int] -> Int
sumSqOddRec [] = 0
sumSqOddRec (x:xs) | odd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

sumSqOddRec [1,2,3]
=

sumSqOddRec (1 : (2 : (3 : [])))
=

1*1 + sumSqOddRec (2 : (3 : []))
= { x = 2, xs = (3 : []), odd 2 = False }

1*1 + sumSqOddRec (3 : [])

How recursion works—sumSqOddRec
sumSqOddRec :: [Int] -> Int
sumSqOddRec [] = 0
sumSqOddRec (x:xs) | odd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

sumSqOddRec [1,2,3]
=

sumSqOddRec (1 : (2 : (3 : [])))
=

1*1 + sumSqOddRec (2 : (3 : []))
=

1*1 + sumSqOddRec (3 : [])
= { x = 3, xs = [], odd 3 = True }

1*1 + (3*3 : sumSqOddRec [])

How recursion works—sumSqOddRec
sumSqOddRec :: [Int] -> Int
sumSqOddRec [] = 0
sumSqOddRec (x:xs) | odd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

sumSqOddRec [1,2,3]
=

sumSqOddRec (1 : (2 : (3 : [])))
=

1*1 + sumSqOddRec (2 : (3 : []))
=

1*1 + sumSqOddRec (3 : [])
=

1*1 + (3*3 + sumSqOddRec [])
=

1*1 + (3*3 + 0)

How recursion works—sumSqOddRec
sumSqOddRec :: [Int] -> Int
sumSqOddRec [] = 0
sumSqOddRec (x:xs) | odd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

sumSqOddRec [1,2,3]
=

sumSqOddRec (1 : (2 : (3 : [])))
=

1*1 + sumSqOddRec (2 : (3 : []))
=

1*1 + sumSqOddRec (3 : [])
=

1*1 + (3*3 + sumSqOddRec [])
=

1*1 + (3*3 + 0)
=

1 + (9 + 0)

How recursion works—sumSqOddRec
sumSqOddRec :: [Int] -> Int
sumSqOddRec [] = 0
sumSqOddRec (x:xs) | odd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

sumSqOddRec [1,2,3]
=

sumSqOddRec (1 : (2 : (3 : [])))
=

1*1 + sumSqOddRec (2 : (3 : []))
=

1*1 + sumSqOddRec (3 : [])
=

1*1 + (3*3 + sumSqOddRec [])
=

1*1 + (3*3 + 0)
=

1 + (9 + 0)
=

10

