
Proof and Programs
Informatics 1

Functional Programming Lecture 17

Don Sannella

University of Edinburgh

20 November 2014

Don Sannella Proof and Programs



Tutorials

Last tutorial next week, usual time/place

Revision tutorial next week:
Wednesday 2–3pm in AT 5.05

Revision tutorials after this week:
Wednesday 2–3pm in AT 5.05 on 3 Dec
Wednesday 2–3pm in AT 5.05 on 10 Dec

Don Sannella Proof and Programs



What is a Proof?

square :: Integer -> Integer
square x = x * x

prop_squares :: Integer -> Integer -> Bool
prop_squares x y =
square (x + y) == x * x + 2 * x * y + y * y

*Main> quickCheck prop_squares
+++ OK, passed 100 tests.
*Main>

Don Sannella Proof and Programs



What is a Proof?

According to Thinking Mathematically (1982)

1. Convince yourself

2. Convince a friend

3. Convince an enemy

What about...

Convince a computer

Don Sannella Proof and Programs



What is a Proof?

A ∨ (B ∧ C ), A → D ` C ∨ D

B ∧ C , A → D ` C ∨ D

B ∧ C , A → D ` C

B, C , A → D ` C

C ∈ {B, C , A → D}

A, A → D ` C ∨ D

A, A → D ` D

A, A → D ` A → D

A → D ∈ {A, A → D}

A, A → D ` A

A ∈ {A, A → D}

Don Sannella Proof and Programs



Why do Proof?

Don Sannella Proof and Programs



Rule of Leibniz

I Indiscernability of Identity

I Identity of Indiscernables

I Equality is reflexive:
x = x

I Equals may be substituted
for equals

Don Sannella Proof and Programs



Retreat of Leibniz

The number I am thinking of
now is not the number I am
thinking of now.

i++ != i++

1. President of the United
States = Barack Obama

2. Abraham Lincoln was
President of the United
States in 1861

3. Abraham Lincoln was
Barack Obama in 1861

Don Sannella Proof and Programs



A Simple Function

square :: Integer -> Integer
square x = x * x

prop_squares :: Integer -> Integer -> Bool
prop_squares x y =
square (x + y) == x * x + 2 * x * y + y * y

Don Sannella Proof and Programs



Algebra

x + 0 = x
x * 1 = x
x + y = y + x
x * y = y * x
(x + y) + z = x + (y + z)
(x * y) * z = x * (y * z)
x * (y + z) = x * y + x * z

2 = 1 + 1

Don Sannella Proof and Programs



Algebraic Proof

square (x + y) = x * x + (2 * (x * x) + y * y)

square (x + y)

= (x + y) * (x + y) -- Distrib.

= (x + y) * x + (x + y) * y -- Commut.

= x * (x + y) + (x + y) * y -- Commut.

= x * (x + y) + y * (x + y) -- Distrib.

= (x * x + x * y) + y * (x + y) -- Distrib.

= (x * x + x * y) + (y * x + y * y) -- Assoc.

= x * x + (x * y + (y * x + y * y)) -- Commut.

= x * x + (x * y + (x * y + y * y))

Don Sannella Proof and Programs



Algebraic Proof

x*x + (2*(x*y) + y*y)

= x*x + ((1+1) * (x*y) + y*y) -- Commut.

= x*x + ((x*y) * (1+1) + y * y) -- Distrib.

= x*x + (((x*y) * 1 + (x*y) * 1) + y*y) -- Id.

= x*x + ((x*y + (x*y) * 1) + y*y) -- Id.

= x*x + ((x*y + x*y) + y*y) -- Assoc.

= x * x + (x * y + (x * y + y * y))

Don Sannella Proof and Programs



Natural Numbers

data Nat = Zero
| Succ Nat

(+) :: Nat -> Nat -> Nat
x + Zero = x
x + Succ y = Succ (x + y)

(*) :: Nat -> Nat -> Nat
x * Zero = Zero
x * Succ y = x + (x * y)

one = Succ Zero
two = Succ one
three = Succ two
four = Succ three

Don Sannella Proof and Programs



Advanced Mathematics

If I have two beans, and
I add two more beans,
what do I have?

Don Sannella Proof and Programs



Proof!

(+) :: Nat -> Nat -> Nat
x + Zero = x
x + Succ y = Succ (x + y)

(*) :: Nat -> Nat -> Nat
x * Zero = Zero
x * Succ y = x + (x * y)

two + two
= Succ (Succ Zero) + Succ (Succ Zero)
= Succ (Succ (Succ Zero) + Succ Zero)
= Succ (Succ (Succ (Succ Zero + Zero)))
= Succ (Succ (Succ (Succ Zero)))
= four

Don Sannella Proof and Programs



Cutting-Edge Mathematics

Prove that:

Zero + x = x

(+) :: Nat -> Nat -> Nat
x + Zero = x
x + Succ y = Succ (x + y)

(*) :: Nat -> Nat -> Nat
x * Zero = Zero
x * Succ y = x + (x * y)

Uh-oh! Our rules aren’t enough!

Don Sannella Proof and Programs



Induction

To prove that a statement is true for all natural numbers:

1. Prove it is true for Zero;

2. Assuming it is true for n, show it is true for Succ n.

Suppose

p :: Nat -> Bool
p Zero = True
p (Succ n) | p n = True

Then

p n = True

Don Sannella Proof and Programs



Identity of Addition

Prove that:

Zero + x = x

Base case:

Zero + Zero = Zero

Step case:
Supposing that

Zero + x = x

We have

Zero + Succ x = Succ (Zero + x)
= Succ x

Don Sannella Proof and Programs



Commutativity

Prove that:

x + y = y + x

Base case:

x + Zero = x
Zero + x = x

Step case:
Supposing that

x + y = y + x

We have

x + Succ y = Succ (x + y)
Succ y + x =

Uh-oh! We need a lemma.

Don Sannella Proof and Programs



Commutativity Lemma

Prove that:

Succ y + x = Succ (y + x)

Base case:

Succ y + Zero = Succ y
Succ (y + Zero) = Succ y

Step case:
Supposing that

Succ y + x = Succ (y + x)

We have

Succ y + Succ x
= Succ (Succ y + x)
= Succ (Succ (y + x))

Succ (y + Succ x) =
Succ (Succ (y + x))

Don Sannella Proof and Programs



Commutativity again

Prove that:
Base case:

x + Zero = x
Zero + x = x

Step case:
Supposing that

x + y = y + x

We have

x + Succ y = Succ (x + y)
Succ y + x = Succ (y + x)

= Succ (x + y)

Don Sannella Proof and Programs



Lists

data [a] = []
| a : [a]

(++) : [a] -> [a] -> [a]
[] ++ xs = xs
(x : xs) ++ ys = x : (xs ++ ys)

reverse :: [a] -> [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

Don Sannella Proof and Programs



Associativity of append

Prove that:

xs ++ (ys ++ zs) = (xs ++ ys) ++ zs

I Base case

[] ++ (ys ++ zs) = ys ++ zs
([] ++ ys) ++ zs = ys ++ ys

I Step case

Supposing that

xs ++ (ys ++ zs) = (xs ++ ys) ++ zs

We have

(x : xs) ++ (ys ++ zs)
= x : (xs ++ (ys ++ zs))

((x : xs) ++ ys) ++ zs
= (x : (xs ++ ys)) ++ zs
= x : ((xs ++ ys) ++ zs)
= x : (xs ++ (ys ++ zs))

Don Sannella Proof and Programs



Reversing Append: Base case

Prove that:

reverse (xs ++ ys) = reverse ys ++ reverse xs

reverse ([] ++ ys) = reverse ys
reverse ys ++ reverse [] = reverse ys ++ []

=

Don Sannella Proof and Programs



Reversing Append: Step case

Supposing that

reverse (xs ++ ys) = reverse ys ++ reverse xs

We have

reverse ((x : xs) ++ ys)
= reverse (x : (xs ++ ys))
= reverse (xs ++ ys) ++ [x]
= (reverse ys ++ reverse xs) ++ [x]
= reverse ys ++ (reverse xs ++ [x])

reverse ys ++ reverse (x : xs)
= reverse ys ++ (reverse xs ++ [x])

Don Sannella Proof and Programs



Double-Reverse

Prove that:

reverse (reverse xs) = xs

Don Sannella Proof and Programs



Summary

1. Proof is challenging, mechanical

2. Proof shows our programs are correct rigorously.

3. Haskell allows equational proof

4. Haskell recursion requires induction

5. 2 + 2 = 4!

Don Sannella Proof and Programs


	

