Informatics 1

Functional Programming Lecture 9
Tuesday 14 October 2014

Algebraic Data Types

Don Sannella

University of Edinburgh

Part 1

Algebraic types

Everything 1s an algebraic type

data Bool = False | True

data Season = Winter | Spring | Summer | Fall
data Shape = Circle Float | Rectangle Float Float
data List a = Nil | Cons a (List a)

data Nat = Zero | Succ Nat

data Exp = Lit Int | Add Exp Exp | Mul Exp Exp

data Tree a = Empty | Leaf a | Branch (Tree a) (Tree a)
data Maybe a = Nothing | Just a
data Pair a b = Pair a b

data Either a b = Left a | Right b

Part 11

Boolean

Boolean

data Bool = False | True

not :: Bool —> Bool

not False = True

not True = False

(&&) :: Bool —> Bool —> Bool
False && g = False

True && g = (q

(]]) :: Bool —> Bool —> Bool
False = q

e
e = True

Boolean — eq and show

eqBool :: Bool —-> Bool —> Bool
eqgBool False False = True
egBool False True = False
eqgBool True False = False
eqgqBool True True = True
showBool :: Bool —-> String
showBool False = "False"

showBool True = "True"

Part 111

Seasons

Seasons

data Season = Winter | Spring | Summer | Fall
next :: Season —> Season

next Winter = Spring

next Spring = Summer

next Summer = Fall

next Fall = Winter

Seasons—e(q and show

egSeason :: Season —> Season —> Bool
egSeason Winter Winter = True
egSeason Spring Spring = True
egSeason Summer Summer = True
egSeason Fall Fall = True
egSeason x Y% = False
showSeason :: Season —-> String
showSeason Winter = "Winter"
showSeason Spring = "Spring"
showSeason Summer = "Summer"

showSeason Fall = "Fagll"

Seasons and 1ntegers

data Season = Winter | Spring | Summer | Fall
toInt :: Season —> Int

toInt Winter = 0

toInt Spring = 1

toInt Summer = 2

toInt Fall = 3

fromInt :: Int —-> Season

fromInt 0 = Winter

fromInt 1 Spring

fromInt 2 Summer

fromInt 3 = Fall

next :: Season —> Season

next x = fromInt ((toInt x + 1) ‘mod' 4)
egSeason :: Season —> Season —> Bool

egSeason x y = (toInt x == tolInt vy)

Part IV

Shape

Shape

type Radius = Float
type Width = Float
type Height = Float
data Shape = Circle Radius

| Rect Width Height

area :: Shape —-> Float
area (Circle r) = pi * r°2
area (Rect w h) = W * h

Shape—eq and show

egShape :: Shape —> Shape —-> Bool

egShape (Circle r) (Circle r’) = (r == 1)

egShape (Rect w h) (Rect w’ h'") = (w == w’) && (h == h'")
egShape x % = False

showShape :: Shape —> String

showShape (Circle r) = "Circle " +4+ showF r

showShape (Rect w h) = "Rect " 4+ showF w ++ " " +4+4 showF h
showF :: Float -> String

showF x | x >= 0 = show X

| otherwise = "(" ++ show x ++ ")"

Shape—tests and selectors

1sCircle :: Shape —-> Bool
isCircle (Circle r) = True
isCircle (Rect w h) = False
isRect :: Shape —-> Bool
isRect (Circle r) = False
isRect (Rect w h) = True
radius :: Shape —> Float
radius (Circle r) = T
width :: Shape -> Float
width (Rect w h) = W
height :: Shape —-> Float

height (Rect w h) = h

Shape—pattern matching

area :: Shape —-> Float
area (Circle r) = pi * r°2
area (Rect w h) = W * h

area :: Shape —-> Float
area s =
if isCircle s then
let
r = radius s
in
pi * r’°2
else if isRect s then
let
w = width s
h = height s
in
W * h
else error "impossible"

Part V

I 1sts

Lists

With declarations
data List a = Nil
| Cons a (List a)
append :: List a —> List a -> List a
append N1l ys = VS
append (Cons x xs) ys = Cons x (append xs ys)

With built-1n notation

(++) :: [a] —> [a] —> [a]
[] ++ ys = yS
(X:xs) ++ ys = X : (xXs ++ ys)

Part VI

Natural numbers

Naturals

With names

data Nat

power

power X

ero

Succ Nat

Float —->
power X Zero

(Succ n)

With built-1n notation

Float —> Int

1.0

X %

(x

Nat —> Float

~

A

1.0
X * power X n

—> Float

(n=1))

Naturals

With declarations
add :: Nat —-> Nat —-> Nat
add m Zero = m
add m (Succ n) = Succ (add m n)
mul :: Nat —> Nat —> Nat
mul m Zero = Zero
mul m (Succ n) = add (mul m n) m

With built-in notation

(+) Int -> Int —-> Int

m+ 0 = m

m+n = (m+ (n-1)) + 1
(*) Int -> Int —-> Int

m« 0 = 0

m = (m » (n-1)) + m

