Informatics 1

Functional Programming Lecture 8 Tuesday 7 October 2014

Lambda expressions, functions and binding

Don Sannella University of Edinburgh

Class test

11:10–12:00 Tuesday 21 October 2014 Appleton Tower LT5 and LT2

Past exams available on website http://www.inf.ed.ac.uk/teaching/courses/inf1/fp/

Revision tutorials

Every Wednesday 2–3pm, Appleton Tower, Computer Lab West (5.05) *In addition* to your normal tutorial

Who should attend? Anybody who struggled to do the first few exercises and didn't finish Anybody else who wants extra help

> Attempt the revision tutorial exercise *in advance*. *Print out* and bring your solutions.

Advanced tutorials

Every Friday 4–5pm, Appleton Tower, Room 4.12 *In addition* to your normal tutorial

Who should attend?

Anybody who got through to at least the first optional exercise ... *and* wants to learn more about Haskell and functional programming

Print out and bring your solutions to the tutorial exercise.

Philip Wadler

Part I

Lambda expressions

A failed attempt to simplify

```
f :: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))
where
sqr x = x * x
pos x = x > 0
```

The above *cannot* be simplified to the following:

f :: [Int] -> Int f xs = foldr (+) 0 (map $(x \star x)$ (filter (x > 0) xs))

A successful attempt to simplify

```
f :: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))
where
sqr x = x * x
pos x = x > 0
```

The above *can* be simplified to the following:

```
f :: [Int] -> Int
f xs = foldr (+) 0
        (map (\x -> x * x)
              (filter (\x -> x > 0) xs))
```

Lambda calculus

```
f :: [Int] -> Int
f xs = foldr (+) 0
        (map (\x -> x * x)
              (filter (\x -> x > 0) xs))
```

The character \setminus stands for λ , the Greek letter *lambda*.

Logicians write $\x \rightarrow x > 0$ as $\lambda x. x > 0$ $\x \rightarrow x * x$ as $\lambda x. x \times x.$

Lambda calculus is due to the logician *Alonzo Church* (1903–1995).

Evaluating lambda expressions

```
(\x -> x > 0) 3
=
   let x = 3 in x > 0
=
   3 > 0
=
   True
  (\x -> x * x) 3
=
 let x = 3 in x * x
=
 3 * 3
=
  9
```

Lambda expressions and currying

$$(\langle x - \rangle \langle y - \rangle x + y \rangle 3 4$$

$$= (\langle x - \rangle (\langle y - \rangle x + y \rangle) 3 \rangle 4$$

$$= (\langle y - \rangle 3 + y \rangle 4$$

$$= (\langle y - \rangle 3 + y \rangle 4$$

$$= (\langle y - \rangle 3 + y \rangle 4$$

$$= 3 + 4$$

$$= 3 + 4$$

Evaluating lambda expressions

The general rule for evaluating lambda expressions is

=

 $(\lambda x. N) M$

 $(\operatorname{let} x = M \operatorname{in} N)$

This is sometimes called the β rule (or beta rule).

Part II

Sections

Sections

- (> 0) is shorthand for $(\setminus x \rightarrow x > 0)$
- (2 *) is shorthand for ($x \rightarrow 2 * x$)
- (+ 1) is shorthand for $(\setminus x \rightarrow x + 1)$
- (2 ^) is shorthand for ($x \rightarrow 2$ ^ x)
- (2) is shorthand for $(x \rightarrow x 2)$

Sections

```
f :: [Int] -> Int
f xs = foldr (+) 0
        (map (\x -> x * x)
            (filter (\x -> x > 0) xs))
```

```
f :: [Int] -> Int
f xs = foldr (+) 0 (map (^ 2) (filter (> 0) xs))
```

Part III

Composition

Composition

(.) :: $(b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)$ (f . g) x = f (g x)

Evaluating composition

```
(.) :: (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)
(f . g) x = f (g x)
sqr :: Int -> Int
sqr x = x * x
pos :: Int -> Bool
pos x = x > 0
(pos . sqr) 3
=
 pos (sqr 3)
=
pos 9
=
  True
```

Compare and contrast

```
possqr :: Int -> Bool possqr :: Int -> Bool
possqr x = pos (sqr x) 	 possqr = pos . sqr
 possqr 3
=
 pos (sqr 3)
=
pos 9
=
 True
```

```
possqr 3
=
 (pos . sqr) 3
=
 pos (sqr 3)
=
pos 9
=
 True
```

Composition is associative

Thinking functionally

f :: [Int] -> Int
f xs = foldr (+) 0 (map (^ 2) (filter (> 0) xs))
f :: [Int] -> Int
f = foldr (+) 0 . map (^ 2) . filter (> 0)

Applying the function

```
f :: [Int] -> Int
f = foldr (+) 0 . map (^2) . filter (> 0)
  f [1, -2, 3]
=
   (foldr (+) 0 . map (^ 2) . filter (> 0)) [1, -2, 3]
=
   foldr (+) 0 (map (^ 2) (filter (> 0) [1, -2, 3]))
=
   foldr (+) 0 (map (^ 2) [1, 3])
=
   foldr (+) 0 [1, 9]
=
   10
```

Part IV

Variables and binding

Variables

x = 2 y = x+1z = x+y*y

*Main> z 11

Part V

Lambda expressions explain binding

Lambda expressions explain binding

A variable binding can be rewritten using a lambda expression and an application:

(N where x = M) $= (\lambda x. N) M$ = (let x = M in N)

A function binding can be written using an application on the left or a lambda expression on the right:

 $(M \text{ where } f \ x = N)$ $= (M \text{ where } f = \lambda x. N)$

Lambda expressions and binding constructs

```
f 2
     where
     f x = x + y * y
           where
            y = x+1
=
     f 2
     where
     f = \langle x - \rangle (x+y*y where y = x+1)
=
     f 2
     where
     f = \langle x - \rangle ((\langle y - \rangle x + y + y) (x + 1))
=
     (\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))
```

Evaluating lambda expressions

```
(\f \to f 2) (\x \to ((\y \to x+y+y) (x+1)))
= (\x \to ((\y \to x+y+y) (x+1))) 2
= (\y \to 2+y+y) (2+1)
= (\y \to 2+y+y) 3
= 2+3+3
```

11