
Informatics 1
Functional Programming Lecture 8

Tuesday 7 October 2014

Lambda expressions, functions and
binding

Don Sannella
University of Edinburgh



Class test

11:10–12:00 Tuesday 21 October 2014
Appleton Tower LT5 and LT2

Past exams available on website
http://www.inf.ed.ac.uk/teaching/courses/inf1/fp/



Revision tutorials

Every Wednesday 2–3pm, Appleton Tower, Computer Lab West (5.05)
In addition to your normal tutorial

Who should attend?
Anybody who struggled to do the first few exercises and didn’t finish

Anybody else who wants extra help

Attempt the revision tutorial exercise in advance.
Print out and bring your solutions.



Advanced tutorials

Every Friday 4–5pm, Appleton Tower, Room 4.12
In addition to your normal tutorial

Who should attend?
Anybody who got through to at least the first optional exercise

. . . and wants to learn more about Haskell and functional programming

Print out and bring your solutions to the tutorial exercise.



Philip Wadler



Part I

Lambda expressions



A failed attempt to simplify
f :: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))

where
sqr x = x * x
pos x = x > 0

The above cannot be simplified to the following:

f :: [Int] -> Int
f xs = foldr (+) 0 (map (x * x) (filter (x > 0) xs))



A successful attempt to simplify
f :: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))

where
sqr x = x * x
pos x = x > 0

The above can be simplified to the following:

f :: [Int] -> Int
f xs = foldr (+) 0

(map (\x -> x * x)
(filter (\x -> x > 0) xs))



Lambda calculus
f :: [Int] -> Int
f xs = foldr (+) 0

(map (\x -> x * x)
(filter (\x -> x > 0) xs))

The character \ stands for λ, the Greek letter lambda.

Logicians write

\x -> x > 0 as λx. x > 0

\x -> x * x as λx. x× x.

Lambda calculus is due to the logician Alonzo Church (1903–1995).



Evaluating lambda expressions
(\x -> x > 0) 3

=
let x = 3 in x > 0

=
3 > 0

=
True

(\x -> x * x) 3
=

let x = 3 in x * x
=

3 * 3
=

9



Lambda expressions and currying
(\x -> \y -> x + y) 3 4

=
((\x -> (\y -> x + y)) 3) 4

=
(let x = 3 in \y -> x + y) 4

=
(\y -> 3 + y) 4

=
let y = 4 in 3 + y

=
3 + 4

=
7



Evaluating lambda expressions
The general rule for evaluating lambda expressions is

(λx.N)M

=

(let x = M inN)

This is sometimes called the β rule (or beta rule).



Part II

Sections



Sections
(> 0) is shorthand for (\x -> x > 0)

(2 *) is shorthand for (\x -> 2 * x)

(+ 1) is shorthand for (\x -> x + 1)

(2 ˆ) is shorthand for (\x -> 2 ˆ x)

(ˆ 2) is shorthand for (\x -> x ˆ 2)



Sections
f :: [Int] -> Int
f xs = foldr (+) 0

(map (\x -> x * x)
(filter (\x -> x > 0) xs))

f :: [Int] -> Int
f xs = foldr (+) 0 (map (ˆ 2) (filter (> 0) xs))



Part III

Composition



Composition
(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)



Evaluating composition
(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

sqr :: Int -> Int
sqr x = x * x

pos :: Int -> Bool
pos x = x > 0

(pos . sqr) 3
=

pos (sqr 3)
=

pos 9
=

True



Compare and contrast

possqr :: Int -> Bool
possqr x = pos (sqr x)

possqr 3
=

pos (sqr 3)
=

pos 9
=

True

possqr :: Int -> Bool
possqr = pos . sqr

possqr 3
=

(pos . sqr) 3
=

pos (sqr 3)
=

pos 9
=

True



Composition is associative
(f . g) . h = f . (g . h)

((f . g) . h) x
=

(f . g) (h x)
=

f (g (h x))
=

f ((g . h) x)
=

(f . (g . h)) x



Thinking functionally
f :: [Int] -> Int
f xs = foldr (+) 0 (map (ˆ 2) (filter (> 0) xs))

f :: [Int] -> Int
f = foldr (+) 0 . map (ˆ 2) . filter (> 0)



Applying the function
f :: [Int] -> Int
f = foldr (+) 0 . map (ˆ 2) . filter (> 0)

f [1, -2, 3]
=

(foldr (+) 0 . map (ˆ 2) . filter (> 0)) [1, -2, 3]
=

foldr (+) 0 (map (ˆ 2) (filter (> 0) [1, -2, 3]))
=

foldr (+) 0 (map (ˆ 2) [1, 3])
=

foldr (+) 0 [1, 9]
=

10



Part IV

Variables and binding



Variables
x = 2
y = x+1
z = x+y*y

*Main> z
11



Part V

Lambda expressions explain binding



Lambda expressions explain binding
A variable binding can be rewritten using a lambda expression and an application:

(N where x = M)

=

(λx.N)M

=

(let x = M inN)

A function binding can be written using an application on the left or a lambda
expression on the right:

(M where f x = N)

=

(M where f = λx.N)



Lambda expressions and binding constructs
f 2
where
f x = x+y*y

where
y = x+1

=
f 2
where
f = \x -> (x+y*y where y = x+1)

=
f 2
where
f = \x -> ((\y -> x+y*y) (x+1))

=
(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))



Evaluating lambda expressions
(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))

=
(\x -> ((\y -> x+y*y) (x+1))) 2

=
(\y -> 2+y*y) (2+1)

=
(\y -> 2+y*y) 3

=
2+3*3

=
11


