
Informatics 1
Functional Programming Lecture 7

Tuesday 30 September 2014

Map, filter, fold

Don Sannella
University of Edinburgh

Required text and reading
Haskell: The Craft of Functional Programming (Third Edition),

Simon Thompson, Addison-Wesley, 2011.
or

Learn You a Haskell for Great Good!
Miran Lipovača, No Starch Press, 2011.

Reading assignment

Monday 15 September 2014 Thompson: parts of Chap. 1–3 and 5

Lipovača: parts of intro, Chap. 1–2

Monday 22 September 2014 Thompson: parts of Chap. 3–7

Lipovača: parts of Chap. 1, 3–4

Monday 7 October 2013 Thompson: parts of Chap. 4, 7, 10, 11 and 17

Lipovača: parts of Chap. 1, 3–5

The assigned reading covers the material very well with plenty of examples.

There will be no lecture notes, just the books. Get one of them and read it!

Part I

List comprehensions, revisited

Evaluating a list comprehension: generator
[x*x | x <- [1..3]]

=
[1*1] ++ [2*2] ++ [3*3]

=
[1] ++ [4] ++ [9]

=
[1, 4, 9]

Evaluating a list comprehension: generator and filter
[x*x | x <- [1..3], odd x]

=
[1*1 | odd 1] ++ [2*2 | odd 2] ++ [3*3 | odd 3]

=
[1 | True] ++ [4 | False] ++ [9 | True]

=
[1] ++ [] ++ [9]

=
[1, 9]

Evaluating a list comprehension: two generators
[(i,j) | i <- [1..3], j <- [i..3]]

=
[(1,j) | j <- [1..3]] ++
[(2,j) | j <- [2..3]] ++
[(3,j) | j <- [3..3]]

=
[(1,1)] ++ [(1,2)] ++ [(1,3)] ++

[(2,2)] ++ [(2,3)] ++
[(3,3)]

=
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Another example
[(i,j) | i <- [1..3], j <- [1..3], i <= j]

=
[(1,j) | j <- [1..3], 1 <= j] ++
[(2,j) | j <- [1..3], 2 <= j] ++
[(3,j) | j <- [1..3], 3 <= j]

=
[(1,1)|1<=1] ++ [(1,2)|1<=2] ++ [(1,3)|1<=3] ++
[(2,1)|2<=1] ++ [(2,2)|2<=2] ++ [(2,3)|2<=3] ++
[(3,1)|3<=1] ++ [(3,2)|3<=2] ++ [(3,3)|3<=3]

=
[(1,1)] ++ [(1,2)] ++ [(1,3)] ++
[] ++ [(2,2)] ++ [(2,3)] ++
[] ++ [] ++ [(3,3)]

=
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Defining list comprehensions

q ::= x← l, q | b, q | *

[e | *]

= [e]

[e | x← [l1, . . ., ln], q]

= (let x = l1 in [e | q]) ++ · · · ++ (let x = ln in [e | q])

[e | b, q]

= if b then [e | q] else []

Another example, revisited
[(i,j) | i <- [1..3], j <- [1..3], i <= j, *]

=
[(1,j) | j <- [1..3], 1 <= j, *] ++
[(2,j) | j <- [1..3], 2 <= j, *] ++
[(3,j) | j <- [1..3], 3 <= j, *]

=
[(1,1)|1<=1,*] ++ [(1,2)|1<=2,*] ++ [(1,3)|1<=3,*] ++
[(2,1)|2<=1,*] ++ [(2,2)|2<=2,*] ++ [(2,3)|2<=3,*] ++
[(3,1)|3<=1,*] ++ [(3,2)|3<=2,*] ++ [(3,3)|3<=3,*]

=
[(1,1)|*] ++ [(1,2)|*] ++ [(1,3)|*] ++
[] ++ [(2,2)|*] ++ [(2,3)|*] ++
[] ++ [] ++ [(3,3)|*]

=
[(1,1)] ++ [(1,2)] ++ [(1,3)] ++
[] ++ [(2,2)] ++ [(2,3)] ++
[] ++ [] ++ [(3,3)]

=
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Part II

Map

Squares
*Main> squares [1,-2,3]
[1,4,9]

squares :: [Int] -> [Int]
squares xs = [x*x | x <- xs]

squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) = x*x : squares xs

Ords
*Main> ords "a2c3"
[97,50,99,51]

ords :: [Char] -> [Int]
ords xs = [ord x | x <- xs]

ords :: [Char] -> [Int]
ords [] = []
ords (x:xs) = ord x : ords xs

Map
map :: (a -> b) -> [a] -> [b]
map f xs = [f x | x <- xs]

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

Squares, revisited
*Main> squares [1,-2,3]
[1,4,9]

squares :: [Int] -> [Int]
squares xs = [x*x | x <- xs]

squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) = x*x : squares xs

squares :: [Int] -> [Int]
squares xs = map sqr xs

where
sqr x = x*x

Map—how it works
map :: (a -> b) -> [a] -> [b]
map f xs = [f x | x <- xs]

map sqr [1,2,3]
=

[sqr x | x <- [1,2,3]]
=

[sqr 1] ++ [sqr 2] ++ [sqr 3]
=

[1, 4, 9]

Map—how it works
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

map sqr [1,2,3]
=

map sqr (1 : (2 : (3 : [])))
=

sqr 1 : map sqr (2 : (3 : []))
=

sqr 1 : (sqr 2 : map sqr (3 : []))
=

sqr 1 : (sqr 2 : (sqr 3 : map sqr []))
=

sqr 1 : (sqr 2 : (sqr 3 : []))
=

1 : (4 : (9 : []))
=

[1, 4, 9]

Ords, revisited
*Main> ords "a2c3"
[97,50,99,51]

ords :: [Char] -> [Int]
ords xs = [ord x | x <- xs]

ords :: [Char] -> [Int]
ords [] = []
ords (x:xs) = ord x : ords xs

ords :: [Char] -> [Int]
ords xs = map ord xs

Part III

Filter

Positives
*Main> positives [1,-2,3]
[1,3]

positives :: [Int] -> [Int]
positives xs = [x | x <- xs, x > 0]

positives :: [Int] -> [Int]
positives [] = []
positives (x:xs) | x > 0 = x : positives xs

| otherwise = positives xs

Digits
*Main> digits "a2c3"
"23"

digits :: [Char] -> [Char]
digits xs = [x | x <- xs, isDigit x]

digits :: [Char] -> [Char]
digits [] = []
digits (x:xs) | isDigit x = x : digits xs

| otherwise = digits xs

Filter
filter :: (a -> Bool) -> [a] -> [a]
filter p xs = [x | x <- xs, p x]

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Positives, revisited
*Main> positives [1,-2,3]
[1,3]

positives :: [Int] -> [Int]
positives xs = [x | x <- xs, x > 0]

positives :: [Int] -> [Int]
positives [] = []
positives (x:xs) | x > 0 = x : positives xs

| otherwise = positives xs

positives :: [Int] -> [Int]
positives xs = filter pos xs

where
pos x = x > 0

Digits, revisited
*Main> digits "a2c3"
"23"

digits :: [Char] -> [Char]
digits xs = [x | x <- xs, isDigit x]

digits :: [Char] -> [Char]
digits [] = []
digits (x:xs) | isDigit x = x : digits xs

| otherwise = digits xs

digits :: [Char] -> [Char]
digits xs = filter isDigit xs

Part IV

Fold

Sum
*Main> sum [1,2,3,4]
10

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

Product
*Main> product [1,2,3,4]
24

product :: [Int] -> Int
product [] = 1
product (x:xs) = x * product xs

Concatenate
*Main> concat [[1,2,3],[4,5]]
[1,2,3,4,5]

*Main> concat ["con","cat","en","ate"]
"concatenate"

concat :: [[a]] -> [a]
concat [] = []
concat (xs:xss) = xs ++ concat xss

Foldr
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

Foldr, with infix notation
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f a [] = a
foldr f a (x:xs) = x ‘f‘ (foldr f a xs)

Sum, revisited
*Main> sum [1,2,3,4]
10

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

Recall that (+) is the name of the addition function,
so x + y and (+) x y are equivalent.

Sum, Product, Concat
sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

product :: [Int] -> Int
product xs = foldr (*) 1 xs

concat :: [[a]] -> [a]
concat xs = foldr (++) [] xs

Sum—how it works
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2]
=

sum (1 : (2 : []))
=

1 + sum (2 : [])
=

1 + (2 + sum [])
=

1 + (2 + 0)
=

3

Sum—how it works, revisited
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f a [] = a
foldr f a (x:xs) = x ‘f‘ (foldr f a xs)

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

sum [1,2]
=

foldr (+) 0 [1,2]
=

foldr (+) 0 (1 : (2 : []))
=

1 + (foldr (+) 0 (2 : []))
=

1 + (2 + (foldr (+) 0 []))
=

1 + (2 + 0)
=

3

Part V

Map, Filter, and Fold
All together now!

Sum of Squares of Positives
f :: [Int] -> Int
f xs = sum (squares (positives xs))

f :: [Int] -> Int
f xs = sum [x*x | x <- xs, x > 0]

f :: [Int] -> Int
f [] = []
f (x:xs)

| x > 0 = (x*x) + f xs
| otherwise = f xs

f :: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))

where
sqr x = x * x
pos x = x > 0

Part VI

Currying

How to add two numbers
add :: Int -> Int -> Int
add x y = x + y

add 3 4
=

3 + 4
=

7

How to add two numbers
add :: Int -> (Int -> Int)
(add x) y = x + y

(add 3) 4
=

3 + 4
=

7

A function of two numbers
is the same as

a function of the first number that returns
a function of the second number.

Currying
add :: Int -> (Int -> Int)
add x = g

where
g y = x + y

(add 3) 4
=

g 4
where
g y = 3 + y

=
3 + 4

=
7

A function of two numbers
is the same as

a function of the first number that returns
a function of the second number.

Currying
add :: Int -> Int -> Int
add x y = x + y

means the same as

add :: Int -> (Int -> Int)
add x = g

where
g y = x + y

and

add 3 4

means the same as

(add 3) 4

This idea is named for Haskell Curry (1900–1982).
It also appears in the work of Moses Schönfinkel (1889–1942),

and Gottlob Frege (1848–1925).

Putting currying to work
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

is equivalent to

foldr :: (a -> a -> a) -> a -> ([a] -> a)
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

sum :: [Int] -> Int
sum = foldr (+) 0

Compare and contrast
sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

sum [1,2,3,4]
=

foldr (+) 0 [1,2,3,4]

sum :: [Int] -> Int
sum = foldr (+) 0

sum [1,2,3,4]
=

(foldr (+) 0) [1,2,3,4]

Sum, Product, Concat
sum :: [Int] -> Int
sum = foldr (+) 0

product :: [Int] -> Int
product = foldr (*) 1

concat :: [[a]] -> [a]
concat = foldr (++) []

