Informatics 1

Functional Programming Lecture 7
Tuesday 30 September 2014

Map, filter, fold

Don Sannella

University of Edinburgh

Required text and reading

Haskell: The Craft of Functional Programming (Third Edition),
Simon Thompson, Addison-Wesley, 2011.
or

Learn You a Haskell for Great Good!
Miran Lipovaca, No Starch Press, 2011.

Reading assignment

Monday 15 September 2014 Thompson: parts of Chap. 1-3 and 5
Lipovaca: parts of intro, Chap. 1-2

Monday 22 September 2014 Thompson: parts of Chap. 3—7
Lipovaca: parts of Chap. 1, 3—4

Monday 7 October 2013 Thompson: parts of Chap. 4,7, 10, 11 and 17
Lipovaca: parts of Chap. 1, 3-5

The assigned reading covers the material very well with plenty of examples.

There will be no lecture notes, just the books. Get one of them and read it!

Part 1

List comprehensions, revisited

Evaluating a list comprehension: generator
[x*x | x <= [1..3]]

[1«1] ++ [2%2] ++ [3%3]

Evaluating a list comprehension: generator and filter
[x*xx | x <= [1..3], odd x]

[11 | odd 1] ++ [2x2 | odd 2] ++ [3%3 | odd 3]
[1 | True] ++ [4 | False | ++ [9 | True |

[1] ++ [] t+ [9]

Evaluating a list comprehension: two generators
[(i,3) | i <= [1..3], J <= [i..3]]
[(1,3) | 3 <= [1..31 1 ++
[(2,3) | 3 <= [2..3] 1 ++
[(3,3 | 3 <= [3..3]]

[(1, 1)] ++ [(1,2)] ++ [(1,3) 1 ++

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Another example

[(1,3) | 1 <=
[(]—rj) | j <-
[(2,3) | 73 <=
[(313) | j <-

[(1,1) |1<=1] ++
[(2,1) |2<=1] ++
[(3,1) |3<=1] ++

[(1,1)] ++ [(1,
[] ++
[] ++ []

J <= [1..3], 1 <=
1 <= 3 1 ++

2 <= 73 1 ++

3 <=5]

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Defining list comprehensions

q =z 1,q]|bq]|~

[e | *]

= le]

[elx— [l1, ..., ln],q]

= (letz=hLin[elql)++ ---++(letx=I,in[e] q])
[elb, q]

= ifbthen [e | q] else []

Another example, revisited
[(1,73) | 1 <= [1..3], 7 <= [1..3], 1 <= 73, =*
[(]—rj) | j <- [1-3]/ 1 <= jr

*
[(2,3) | 3 <= [1..3], 2 <=3, =] ++
[(3,3) | 3 <= [1..3], 3 <=3, %

[(1,1)11<=1,%] ++ [(1,2)|1<=2,*] ++ [(1,3)|1l<=
[(2,1) l2<=1,x] ++ [(2,2) |2<=2,*] ++ [(2,3) |2<=
[(3, 1) 13<=1,x] ++ [(3,2)|3<=2,*] ++ [(3,3)[3<=

[(1,1) =] ++ [(1,2) %] ++ [(1,3)|*] ++
[] t+ [(2,2) [] ++ [(2,3)] ++

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Part 11

Map

Squares

x*Main> squares [1,-2, 3]

[1,4,9]

squares :: [Int] —-> [Int]
squares xs = [x*xXx | x <= x5]
squares :: [Int] —-> [Int]
squares [] =[]

squares (xXx:xXs) = X*xX : sguares XS

Ords

*Main> ords "a2c3"
[97,50,99,51]

ords :: [Char] —-> [Int]

ords xXs = [ord x | x <= xXs]
ords :: [Char] —-> [Int]

ords [] =[]

ords (x:xXs) = ord x : ords XxXs

map
map

map
map
map

Hho Hh e

(a —> Db)
Xs = [

(x:xX83) =

—> [b]
<- X8]
—> [b]

Squares, revisited

x*Main> squares [1,-2, 3]

[1,4,9]
squares :: [Int] —-> [Int]
squares xs = [x*xXx | x <= x5]
squares :: [Int] —-> [Int]
squares [] =[]
squares (xXx:xXs) = X*xX : sguares XS
squares :: [Int] —-> [Int]
squares Xs = map SJdr XS
where

sSgr X = X*X

Map—how 1t works

map :: (a —> b) -> [a] —-> [Db]
map f xs = [£ x | x <= x5]

map sqr [1,2,3]
[sgr x | x <- [1,2,3]]

[sgr 1] ++ [sgr 2] ++ [sqgr 3]

Map—how 1t works

map :: (a —> b) -> [a] —-> [Db]
map £ [] =[]
map f (x:xs) = f x : map f xs

map sqgr [1,2,3]

map sqgr (1 : (2 : (3 : [1)))

sqr 1 : map sqgr (2 : (3 : [1))

sqgr 1 : (sqr 2 : map sqr (3 : []))

sgr 1 : (sqr 2 : (sgqr 3 : map sqgr []))

sgqr 1 : (sgr 2 : (sgr 3 : []))

Ords, revisited

*Main> ords "a2c3"
[97,50,99,51]

ords :: [Char] —-> [Int]

ords xs = [ord x | x <= xXs]
ords :: [Char] —-> [Int]

ords [] =[]

ords (x:xXs) = ord x : ords XxXs
ords :: [Char] —-> [Int]

ords xs = map ord xs

Part 111

Filter

Positives

x*Main> positives [1,-2, 3]

[1, 3]

positives :: [Int] —> [Int]

positives xs = [X | x <— x5, x > 0]

positives :: [Int] —> [Int]

positives [] =[]

positives (x:xs) | x > 0 = X : positives Xxs

| otherwise = ©positives xs

Digits

*Main> digits "a2c3"

"23"

digits :: [Char] —> [Char]

digits xs = [x | x <= xs, 1isDigit x]
digits :: [Char] —-> [Char]

digits [] =[]

digits (x:xs) | isDigit x = x : digits xs

| otherwise = digits xs

Filter

filter :: (a —-> Bool) —-> [a] —-> [a]

filter p xs = [X | x <= X8, p x]

filter :: (a —> Bool) —-—> [a] —-> [a]

filter p [] =[]

filter p (x:xs) | p X = x : filter p xs

| otherwise = filter p xs

Positives, revisited

x*Main> positives [1,-2, 3]

[1,3]
positives :: [Int] —> [Int]
positives xs = [x | x <= x5, x > 0]
positives :: [Int] —-> [Int]
positives [] =[]
positives (x:xs) | x > 0 = X : positives Xxs
| otherwise = ©positives xs
positives :: [Int] -> [Int]
positives xs = filter pos xs
where

pos x = x >0

Digits, revisited

*Main> digits "a2c3"

"23"

digits :: [Char] —> [Char]

digits xs = [x | x <= xs, 1isDigit x]

digits :: [Char] —-> [Char]

digits [] =[]

digits (x:xs) | isDigit x = x : digits xs
| otherwise = digits xs

digits :: [Char] —-> [Char]

digits xs = filter 1sDigit xs

Part IV

Fold

Sum

*Main> sum [1,2,3,4]
10

sum :: [Int] —-> Int
sum [] = 0
sum (xX:xs) = X 4+ sum XS

Product

x*Main> product [1,2, 3, 4]
24

product :: [Int] —-> Int
product [] = 1
product (x:xs) = x * product xs

Concatenate

*Main> concat [[1,2,3],[4,65]]
[112131415]

*Main> concat ["con", "cat", "en", "ate"]
"concatenate"

concat :: [[a]] —-—> [a]
concat [] = []
concat (xs:xss) = XS ++ concat xss

Foldr

foldr :: (a —> a -—> a) —-> a —-—> [a] —-—> a
foldr £ a [] = a
foldr £ a (x:xs8) = f x (foldr £ a xs)

Foldr, with infix notation

foldr :: (a —> a -—> a) —-> a —-—> [a] —-—> a
foldr £ a [] = a
foldr £ a (x:xs8) = x ‘f£f' (foldr £ a xs)

Sum, revisited

*Main> sum [1,2,3,4]

10

sum :: [Int] —-> Int

sum [] = 0

sum (xX:xs) = X 4+ sum XS
sum :: [Int] —-> Int

sum xs = foldr (+) 0 xs

Recall that (+) 1s the name of the addition function,
so x + y and (+) x y areequivalent.

Sum, Product, Concat

sum :: [Int] —-> Int

sum xs = foldr (+) 0 xs
product :: [Int] —-> Int
product xs = foldr (%) 1 xs
concat o [[a]]l —> [a]

concat xs = foldr (++) [] Xxs

Sum—how it works

sum :: [Int] —-> Int

sum [] = 0

sum (xX:xs) = X + sum XS
sum [1,2]

sum (1 : (2 : []))

1 + sum (2 : [1])

1 + (2 4+ sum [])

1 + (2 + 0)

Sum—how 1t works, revisited

foldr :: (a —> a -—> a) —-> a —-—> [a] —-—> a
foldr £ a [] = a

foldr £ a (x:xs8) = x ‘f£f' (foldr £ a xs)
sum :: [Int] —-> Int

sum xs = foldr (+) 0 xs

sum [1,2]

foldr (+) 0 [1,2]

foldr (+) 0 (1 : (2 : []))

1 + (foldr (+) 0 (2 : [1))

1 + (2 + (foldr (+) 0 []))

1 + (2 + 0)

Part V

Map, Filter, and Fold
All together now!

Sum of Squares of Positives

f :: [Int] —-> Int
f xs = sum (squares (positives xs))
f :: [Int] —-> Int
f xXs = sum [x*X | X <= x5, X > 0]
f :: [Int] —-> Int
£ [] =[]
f (x:x8)
| x > 0 = (x*x) + f xs
| otherwise = f xs
f :: [Int] —-> Int
f xs = foldr (+) O (map sqgr (filter pos xs))
where
sgqr x = X * X
pos x = x > 0

Part VI

Currying

How to add two numbers

add :: Int —> Int —-> Int
add x y = x + vy

add 3 4
3 + 4

.

How to add two numbers

add :: Int —> (Int —-> Int)
(add x) v = x + vy

(add 3) 4

3+ 4

A function of two numbers
1s the same as
a function of the first number that returns
a function of the second number.

Currying

add :: Int —-> (Int —-> Int)
add x = g
where
gy = X tY
(add 3) 4
g 4
where

gy =3 +y

A function of two numbers
1s the same as
a function of the first number that returns
a function of the second number.

Currying

add :: Int —> Int —-> Int
add x yv = x + vy

means the same as

add :: Int —-> (Int —-> Int)
add x = g
where
gy = X tY
and
add 3 4

means the same as

(add 3) 4

This idea is named for Haskell Curry (1900-1982).
It also appears in the work of Moses Schonfinkel (1889-1942),
and Gottlob Frege (1848—1925).

Putting currying to work

foldr :: (a —> a -—> a) —-> a —-—> [a] —-—> a
foldr £ a [] = a

foldr £ a (x:xs8) = f x (foldr £ a xs)
sum :: [Int] —-> Int

sum xs = foldr (+) 0 xs

1s equivalent to

foldr :: (a —> a -> a) —-> a —> ([a] —-> a)
foldr £ a [] = a
foldr £ a (x:xs) = f x (foldr £ a xs)

sum :: [Int] —> Int
sum = foldr (+) O

Compare and contrast

sum :: [Int] —-> Int
sum xs = foldr (+) 0 xs

sum [1,2,3,4]

foldr (+) 0 [1,2,3,4]

sum :: [Int]

sum = foldr

—> Int

(+)

sum [1,2,3,4]

(foldr

(+)

0)

0

[1,2,3,4]

Sum, Product, Concat

sum :: [Int] —-> Int

sum = foldr (+) O
product :: [Int] —> Int
product = foldr (x) 1
concat o [[a]]l —> [a]

concat = foldr (++) []

