
Informatics 1
Functional Programming Lecture 6

Monday 29 September 2014

Even more fun with recursion

Don Sannella
University of Edinburgh

Part I

Counting

Counting
Prelude [1..3]
[1,2,3]
Prelude enumFromTo 1 3
[1,2,3]

[m..n] stands for enumFromTo m n

Recursion

enumFromTo :: Int -> Int -> [Int]
enumFromTo m n | m > n = []

| m <= n = m : enumFromTo (m+1) n

How enumFromTo works (recursion)
enumFromTo :: Int -> Int -> [Int]
enumFromTo m n | m > n = []

| m <= n = m : enumFromTo (m+1) n

enumFromTo 1 3
=

1 : enumFromTo 2 3
=

1 : (2 : enumFromTo 3 3)
=

1 : (2 : (3 : enumFromTo 4 3))
=

1 : (2 : (3 : []))
=

[1,2,3]

Factorial
Main*> factorial 3

Library functions

factorial :: Int -> Int
factorial n = product [1..n]

Recursion

factorialRec :: Int -> Int
factorialRec n = fact 1 n

where
fact :: Int -> Int -> Int
fact m n | m > n = 1

| m <= n = m * fact (m+1) n

How factorial works (recursion)
factorialRec :: Int -> Int
factorialRec n = fact 1 n

where
fact :: Int -> Int -> Int
fact m n | m > n = 1

| m <= n = m * fact (m+1) n

factorialRec 3
=

fact 1 3
=

1 * fact 2 3
=

1 * (2 * fact 3 3)
=

1 * (2 * (3 * fact 4 3))
=

1 * (2 * (3 * 1))
=

6

Counting forever!
Prelude [0..]
[0,1,2,3,4,5,...
Prelude enumFrom 0
[0,1,2,3,4,5,...

[m..] stands for enumFrom m

Recursion

enumFrom :: Int -> [Int]
enumFrom m = m : enumFrom (m+1)

How enumFrom works (recursion)
enumFrom :: Int -> [Int]
enumFrom m = m : enumFrom (m+1)

enumFrom 0
=

0 : enumFrom 1
=

0 : (1 : enumFrom 2)
=

0 : (1 : (2 : enumFrom 3))
=

...
=

[0,1,2,... -- computation goes on forever!

Part II

Zip and search

Zip
zip :: [a] -> [b] -> [(a,b)]
zip [] ys = []
zip xs [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip [0,1,2] "abc"
=

(0,’a’) : zip [1,2]"bc"
=

(0,’a’) : ((1,’b’) : zip [2] "c")
=

(0,’a’) : ((1,’b’) : ((2,’c’) : zip [] ""))
=

(0,’a’) : ((1,’b’) : ((2,’c’) : []))
=

[(0,’a’),(1,’b’),(2,’c’)]

Two alternative definitions of zip
Liberal

zip :: [a] -> [b] -> [(a,b)]
zip [] ys = []
zip xs [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

Conservative

zipHarsh :: [a] -> [b] -> [(a,b)]
zipHarsh [] [] = []
zipHarsh (x:xs) (y:ys) = (x,y) : zipHarsh xs ys

Lists of different lengths
Prelude> zip [0,1,2] "abc"
[(0,’a’),(1,’b’),(2,’c’)]

Prelude> zipHarsh [0,1,2] "abc"
[(0,’a’),(1,’b’),(2,’c’)]

Prelude> zip [0,1,2] "abcde"
[(0,’a’),(1,’b’),(2,’c’)]

Prelude> zipHarsh [0,1,2] "abcde"
[(0,’a’),(1,’b’),(2,’c’)*** Exception:
Non-exhaustive patterns in function zipHarsh

Prelude> zip [0,1,2,3,4] "abc"
[(0,’a’),(1,’b’),(2,’c’)]

Prelude> zipHarsh [0,1,2,3,4] "abc"
[(0,’a’),(1,’b’),(2,’c’)*** Exception:
Non-exhaustive patterns in function zipHarsh

More fun with zip
Prelude> zip [0..] "words"
[(0,’w’),(1,’o’),(2,’r’),(3,’d’),(4,’s’)]

Prelude> let pairs xs = zip xs (tail xs)
Prelude> pairs "words"
[(’w’,’o’),(’o’,’r’),(’r’,’d’),(’d’,’s’)]

Zip with an infinite list
zip :: [a] -> [b] -> [(a,b)]
zip [] ys = []
zip xs [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip [0..] "abc"
=

(0,’a’) : zip [1..] "bc"
=

(0,’a’) : ((1,’b’) : zip [2..] "c")
=

(0,’a’) : ((1,’b’) : ((2,’c’) : zip [3..] ""))
=

(0,’a’) : ((1,’b’) : ((2,’c’) : zip (3 : [4..]) ""))
=

(0,’a’) : ((1,’b’) : ((2,’c’) : []))
=

[(0,’a’),(1,’b’),(2,’c’)]

Computer can determine (3 : [4..]) 6= [] without computing [4..].

Dot product of two lists
Comprehensions and library functions

dot :: Num a => [a] -> [a] -> a
dot xs ys = sum [x*y | (x,y) <- zipHarsh xs ys]

Recursion

dotRec :: Num a => [a] -> [a] -> a
dotRec [] [] = 0
dotRec (x:xs) (y:ys) = x*y + dotRec xs ys

How dot product works (comprehension)
dot :: Num a => [a] -> [a] -> a
dot xs ys = sum [x*y | (x,y) <- zip xs ys]

dot [2,3,4] [5,6,7]
=

sum [x*y | (x,y) <- zip [2,3,4] [5,6,7]]
=

sum [x*y | (x,y) <- [(2,5), (3,6), (4,7)]]
=

sum [2*5, 3*6, 4*7]
=

sum [10, 18, 28]
=

56

How dot product works (recursion)
dotRec :: Num a => [a] -> [a] -> a
dotRec [] [] = 0
dotRec (x:xs) (y:ys) = x*y + dotRec xs ys

dotRec [2,3,4] [5,6,7]
=

dotRec (2:(3:(4:[]))) (5:(6:(7:[])))
=

2*5 + dotRec (3:(4:[])) (6:(7:[]))
=

2*5 + (3*6 + dotRec (4:[]) (7:[]))
=

2*5 + (3*6 + (4*7 + dotRec [] []))
=

2*5 + (3*6 + (4*7 + 0))
=

10 + (18 + (28 + 0))
=

56

Search
Main*> search "bookshop" ’o’
[1,2,6]

Comprehensions and library functions

search :: Eq a => [a] -> a -> [Int]
search xs y = [i | (i,x) <- zip [0..] xs, x==y]

Recursion

searchRec :: Eq a => [a] -> a -> [Int]
searchRec xs y = srch xs y 0

where
srch :: Eq a => [a] -> a -> Int -> [Int]
srch [] y i = []
srch (x:xs) y i

| x == y = i : srch xs y (i+1)
| otherwise = srch xs y (i+1)

How search works (comprehension)
search :: Eq a => [a] -> a -> [Int]
search xs y = [i | (i,x) <- zip [0..] xs, x==y]

search "book" ’o’
=

[i | (i,x) <- zip [0..] "book", x==’o’]
=

[i | (i,x) <- [(0,’b’),(1,’o’),(2,’o’),(3,’k’)], x==’o’]
=

[0|’b’==’o’]++[1|’o’==’o’]++[2|’o’==’o’]++[3|’k’==’o’]
=

[]++[1]++[2]++[]
=

[1,2]

How search works (recursion)
searchRec xs y = srch xs y 0

where
srch [] y i = []
srch (x:xs) y i | x == y = i : srch xs y (i+1)

| otherwise = srch xs y (i+1)

searchRec "book" ’o’
=

srch "book" ’o’ 0
=

srch "ook" ’o’ 1
=

1 : srch "ok" ’o’ 2
=

1 : (2 : srch "k" ’o’ 3)
=

1 : (2 : srch "" ’o’ 4)
=

1 : (2 : [])
=

[1,2]

Part III

Select, take, and drop

Select, take, and drop
Prelude> "words" !! 3
’d’

Prelude> take 3 "words"
"wor"

Prelude> drop 3 "words"
"ds"

Select, take, and drop (comprehensions)
selectComp :: [a] -> Int -> a -- (!!)
selectComp xs i = the [x | (j,x) <- zip [0..] xs, j == i]

where
the [x] = x

takeComp :: Int -> [a] -> [a]
takeComp i xs = [x | (j,x) <- zip [0..] xs, j < i]

dropComp :: Int -> [a] -> [a]
dropComp i xs = [x | (j,x) <- zip [0..] xs, j >= i]

How take works (comprehension)
takeComp :: Int -> [a] -> [a]
takeComp i xs = [x | (j,x) <- zip [0..] xs, j < i]

take 3 "words"
=

[x | (j,x) <- zip [0..] "words", j < 3]
=

[x | (j,x) <- [(0,’w’),(1,’o’),(2,’r’),(3,’d’),(4,’s’)],
j < 3]

=
[’w’|0<3]++[’o’|1<3]++[’r’|2<3]++[’d’|3<3]++[’s’|4<3]

=
[’w’]++[’o’]++[’r’]++[]++[]

=
"wor"

Lists
Every list can be written using only (:) and [].

[1,2,3] = 1 : (2 : (3 : []))

"list" = [’l’,’i’,’s’,’t’]
= ’l’ : (’i’ : (’s’ : (’t’ : [])))

A recursive definition: A list is either

• null, written [], or

• constructed, written x:xs,
with head x (an element), and tail xs (a list).

Natural numbers
Every natural number can be written using only (+1) and 0.

3 = ((0 + 1) + 1) + 1

A recursive definition: A natural number is either

• zero, written 0, or

• successor, written n+1
with predecessor n (a natural number).

Select, take, and drop (recursion)
(!!) :: [a] -> Int -> a
(x:xs) !! 0 = x
(x:xs) !! i = xs !! (i-1)

take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs

drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop i [] = []
drop i (x:xs) = drop (i-1) xs

Pattern matching and conditionals (squares)
Pattern matching

squares :: [Integer] -> [Integer]
squares [] = []
squares (x:xs) = x*x : squares xs

Conditionals with binding

squares :: [Integer] -> [Integer]
squares ws =

if null ws then
[]

else
let
x = head ws
xs = tail ws

in
x*x : squares xs

Pattern matching and conditionals (take)
Pattern matching

take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs

Conditionals with binding

take :: Int -> [a] -> [a]
take i ws

if i == 0 || null ws then
[]

else
let
x = head ws
xs = tail ws

in
x : take (i-1) xs

Pattern matching and guards (take)
Pattern matching

take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs

Guards

take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) | i > 0 = x : take (i-1) xs

How take works (recursion)
take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs

take 3 "words"
=

’w’ : take 2 "ords"
=

’w’ : (’o’ : take 1 "rds")
=

’w’ : (’o’ : (’r’ : take 0 "ds"))
=

’w’ : (’o’ : (’r’ : []))
=

"wor"

The infinite case
take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs

takeComp :: Int -> [a] -> [a]
takeComp i xs = [x | (j,x) <- zip [0..] xs, j < i]

Prelude> take 3 [10..]
[10,11,12]

Prelude> takeComp 3 [10..]
[10,11,12 -- computation goes on forever!

The infinite case explained
Function takeComp is equivalent to takeCompRec.

takeCompRec :: Int -> [a] -> [a]
takeCompRec i xs = helper 0 i xs

where
helper j i [] = []
helper j i (x:xs) | j > i = x : helper (j+1) i xs

| otherwise = helper (j+1) i xs

takeCompRec 3 [10..]
=

helper 0 3 [10..]
=

10 : helper 1 3 [11..]
=

10 : (11 : helper 2 3 [12..])
=

10 : (11 : (12 : helper 3 3 [13..]))
=

10 : (11 : (12 : helper 4 3 [14..]))
= ...

Part IV

Arithmetic

Arithmetic (recursion)
(+) :: Int -> Int -> Int
m + 0 = m
m + n = (m + (n-1)) + 1

(*) :: Int -> Int -> Int
m * 0 = 0
m * n = (m * (n-1)) + m

(ˆ) :: Int -> Int -> Int
m ˆ 0 = 1
m ˆ n = (m ˆ (n-1)) * m

How arithmetic works (recursion)
(+) :: Int -> Int -> Int
m + 0 = m
m + n = (m + (n-1)) + 1

2 + 3
=

(2 + 2) + 1
=

((2 + 1) + 1) + 1
=

(((2 + 0) + 1) + 1) + 1
=

((2 + 1) + 1) + 1
=

5

Giuseppe Peano (1858–1932)

The definition of the natural numbers is named the Peano axioms in his honour.
Made key contributions to the modern treatment of mathematical induction.

