Informatics 1

Functional Programming Lecture 6
Monday 29 September 2014

Even more fun with recursion

Don Sannella

University of Edinburgh

Part 1

Counting

Counting

Prelude [1..3]

[1,2, 3]

Prelude enumFromTo 1 3
[1,2, 3]

[m..n] stands for enumFromTo m n

Recursion
enumFromTo :: Int —-> Int —> [Int]
enumFromTo m n | m > n = []

| m <= n = m : enumFromTo (m+1l) n

How enumFromTo works (recursion)

enumFromTo :: Int -> Int —-> [Int]
enumFromTo m n | m > n = []
| m <= n = m : enumFromTo (m+1l) n

enumFromTo 1 3

1 : enumFromTo 2 3
: 1 : (2 : enumFromTo 3 3)
i 1 : (2 : (3 : enumFromTo 4 3))
l 1 (2 (3 = [1))

Factorial

Main*> factorial 3

Library functions

factorial :: Int —> Int
factorial n = product [1..n]
Recursion
factorialRec :: Int —-> Int
factorialRec n = fact 1 n
where
fact :: Int -> Int —-> Int
fact mn | m > n = 1

| m <= n = m *x fact (m+l) n

How factorial works (recursion)

factorialRec :: Int —-> Int
factorialRec n = fact 1 n
where
fact :: Int —> Int —-> Int
fact mn | m > n = 1
| m <= n = m % fact (m+l) n
factorialRec 3
fact 1 3
1 « fact 2 3
1 (2 fact 3 3)
1 x (2 = (3 = fact 4 3))

1~ (2 x (3 % 1))

Counting forever!

Prelude [O0..]
(0,1,2,3,4,5, ...
Prelude enumFrom O
[0,1,2,3,4,5, ...

[m..] stands for enumFrom m
Recursion
enumFrom :: Int —-> [Int]

enumkFrom m = m : enumkbFrom

(m+1)

How enumFrom works (recursion)

enumfFrom :: Int —-> [Int]
enumFrom m = m : enumFrom (m+1)

enumFrom O

O : enumFrom 1
O : (1 : enumFrom 2)
O : (1 : (2 : enumFrom 3))

[0,1,2, ... —— computation goes on forever!

Part 11

Z1p and search

Z1p

zip :: [a] -> [b] -> [(a,b)]

zip [] ys =[]

zip xs [] =[]

zip (x:xs) (y:ys) = (X,y) : zip XS ysS

zip [0,1,2] "abc"

(0,7a’) : zip [1,2]"bc"
(0,7a”) + ((1,"b") : zip [2]
(0,7a") + ((L,"b") =+ ((2,7c’)
(0,7a”) + ((L,"b") + ((2,7c")

[(O, 7a"), (1,"b"), (2,7c")]

"C")

Two alternative definitions of zip

Liberal

zip :: [a]l] —> [b] —> [(a,b)]

zip [] ys =[]

zip xs [] =[]

zip (x:xs) (y:ys) = (x,V) zlp XS ys
Conservative

zipHarsh :: [a] —-> [b] —> [(a,b)]

zipHarsh [] [] =[]

zipHarsh (x:xs) (y:ys) = (x,y) : zipHarsh xs ys

Lists of different lengths

Prelude> zip [0,1,2] "abe"
[(0,"a"), (1,"b"), (2,7c")]

Prelude> zipHarsh [0,1,2] "abc"
[(0,"a"), (1,"b"), (2,7c")]

Prelude> zip [0,1,2] "abcde"
[(0,"a"), (1,"b"), (2,"c")]

Prelude> zipHarsh [0,1,2] "abcde"
[(0,"a"), (1,"b"), (2,"c’)**xx Exception:
Non—-exhaustive patterns in function zipHarsh

Prelude> zip [0,1,2,3,4] "abce"
[(O,"a"), (1,"b"),(2,"c")]

Prelude> zipHarsh [0,1,2,3,4] "abc"
[(O0,"7a’), (1,’b"), (2,"c’")**xx Exception:
Non—-exhaustive patterns in function zipHarsh

More fun with zip

Prelude> zip [0..] "words"
[(O,"w"), (1,"0"),(2,"x"),(3,7d"), (4,"s")]

Prelude> let pairs xs = zip xs (tail xs)
Prelude> pairs "words"
[("w","0"), ("o, '), ("x","d"), ("d","s")]

Z1p with an infinite list

zip :: [a] -> [b] -> [(a,b)]

zip [] ys =[]

zip xs [] =[]

zip (x:xs) (y:ys) = (X,y) : zip XS ysS

zip [0..] "abc"

(0,7a’) : zip [1..] "bc"

(0,"a’") =« ((1,"b") : zip [2..] "c")

(0,7a”) + ((L,"b") « ((2,'c") : zip [3..] ""))
(0,7a") « ((L,"b") =+ ((2,'c’) : zip (3 : [4..]) ""))
(0,7a") + ((1,"b") =+ ((2,7c") =+ []))

[(0, 7a"), (1,"b"), (2,7c")]

Computer can determine (3 : [4..]) # [] without computing [4..].

Dot product of two lists

Comprehensions and library functions

dot
dot xs

Recursion

dotRec ::

dotRec
dotRec

ys =

:: Num a => [a] —>

sum [X*y

[a] —> a

(x,y) <— zipHarsh xs ys

]

How dot product works (comprehension)

dot :: Num a => [a] —> [a] —> a
dot xs ys = sum [x*xy | (x,y) <- zip Xs ys |

dot [2,3,4] [5,6,7]

sum [x*xy | (x,y) <= zip [2,3,4] [5,6,7] 1
sum [x*xy | (x,y) <= [(Z2,5), (3,6), (4,7)]]
sum [2x5, 3x6, 4%7]

sum [10, 18, 28]

56

How dot product works (recursion)

dotRec :: Num a => [a] —> [a] —> a
dotRec [] [] = 0
dotRec (x:xs) (y:ys) = xxy + dotRec xs ys

dotRec [2,3,4] [5,6,7]

dotRec (2:(3:(4:[]))) (5:(6:(7:11)))

2x5 + dotRec (3:(4:[]1)) (6:(7:11))

2x5 + (3%x6 + dotRec (4:[]) (7:[1]))

2x5 + (3x6 + (4%x7 + dotRec [] [1))

2x5 + (3x6 + (4%x7 + 0))

10 + (18 + (28 + 0))

56

Search

Mainx> search "bookshop" ’o’
[1,2,6]

Comprehensions and library functions

search :: Egq a => [a] —> a —> [Int]
search xs y = [1 | (i,x) <= zip [0..] xs, x==y
Recursion
searchRec :: Egq a => [a] -> a —-> [Int]
searchRec xs y = srch xs y O
where
srch :: Eqg a => [a] —> a —> Int -> [Int]
srch [] y 1 =[]

srch (x:xs) y 1
| x ==y = 1 : srch xs y (i+1)
| otherwise = srch xs y (1i+1)

How search works (comprehension)

search :: Eg a => [a] —-> a —> [Int]
search xs yv = [1 | (i,x) <= zip [0..] xs, x==y]

search "book" ‘o’

[1 | (i,x) <— zip [0..] "book", x=='0']

[1 | (1,x) <= [(0,"b"),(1,"0"),(2,"0"),(3,"k")], x=="0"]
[0]’b’=="0"1++[1]|"0’/=="0"]++[2|’0"=="0" 1++[3]| 'k’ =="0"]
[J++[1]++[2]++[]

[1,2]

How search works (recursion)

searchRec xs y = srch xs y 0
where
srch [] y 1 =[]
srch (x:xs) y 1 | X ==y = 1 : srch xs y (1+1)
| otherwise = srch xs y (i+1)

searchRec "book" 7o’

srch "book" "o’ 0

srch "ook" "o’ 1

1 : srch "ok" o' 2
) 1 : (2 : srch "k" "o’ 3)
) 1 : (2 : srch "" 7o' 4)
_1: (2 = [1)

[1,2]

Part 111

Select, take, and drop

Select, take, and drop

Prelude> "words" !! 3
Id/

Prelude> take 3 "words"
"wor"

Prelude> drop 3 "words"
" dS "

Select, take, and drop (comprehensions)

selectComp :: [a] —> Int —> a
selectComp xs i = the [x |
where
the [x] = X
takeComp :: Int —-> [a] —> [a]
takeComp 1 xs = [x | (3,x)
dropComp :: Int —-> [a] —-> [a]
dropComp 1 xs = [x | (3,X%)

—— (!
(3, x)

<- zi1p
<- zi1p

)

<- zip

[0..]

[O.

XS,

XS,

.] Xxs,

7 < 1

jo>= i

j == i

]

How take works (comprehension)

takeComp :: Int —-> [a] —> [a]
takeComp 1 xs = [x | (3,x) <= zip [0..] xs, J < i]

take 3 "words"
[x | (3,%x) <= zip [0..] "words", j < 3]

[x [(J,x) <= [(0,"w"),(1,"0"),(2,"c"), (3,"d"), (4,"s")],

["w! |O<3]++["0" |1<3]++["r" |2<3]++["d" |3<3]++["s" |4<3]
[Tw/ J++["0"]J++[" "] ++[]++]]

"WOr"

Lists

Every list can be written using only (:) and [].

[(1,2,31 = 1 (2 :+ (3 : []))

"list™" — [’l’,’i’,’S’,’t’]
— r1r . (’i’ . (ISI . (/t/ . [])>)

A recursive definition: A [ist 1s either
e null, written [], or

e constructed, written x : X s,

with head x (an element), and tail xs (a list).

Natural numbers

Every natural number can be written using only (+1) and 0.

3 = ((0O + 1) + 1) + 1
A recursive definition: A natural number 1s either
e zero, written O, or

® successor, written n+1

with predecessor n (a natural number).

Select, take, and drop (recursion)

(') ::: [a] —> Int —> a

(x:xs) !0 = x

(x:xs) ' 1 = xs ! (i-1)

take :: Int -> [a] -> [a]

take 0 xs =[]

take 1 [] =[]

take 1 (x:x8) = x : take (1i-1) xs
drop :: Int -> [a] -> [a]

drop 0 xs = XS

drop 1 [] =[]

drop 1 (x:xs) = drop (1i-1) xs

Pattern matching and conditionals (squares)

Pattern matching

squares :: [Integer] —-> [Integer]
squares [] =[]
squares (xX:Xs) = X*X : sguares XS

Conditionals with binding

squares :: [Integer] —-> [Integer]
squares ws =
1f null ws then

[]

else
let

X = head ws

Xs = tail ws
in

X*X ¢ SJuares XS

Pattern matching and conditionals (take)

Pattern matching

take :: Int -> [a] -> [a]

take 0 xs =[]

take 1 [] =[]

take 1 (x:xs) = x : take (i-1) xs

Conditionals with binding

take :: Int -—> [a] —> [a]
take 1 ws
if 1 == | | null ws then
[]
else
let
X = head ws
Xs = tail ws
in

X : take (1-1) xs

Pattern matching and guards (take)

Pattern matching

take :: Int —-> [a] —> [a]

take 0 xs = []

take 1 [] =[]

take 1 (x:x3) = x : take (i-1) xs
Guards

take :: Int -—> [a] —> [a]

take 0 xs = []

take 1 [] =[]

take 1 (x:xs) | 1 > 0 = x : take

(1-1)

XS

How take works (recursion)

take :: Int -> [a] —-—> [a]

take 0 xs =[]

take 1 [] = []

take 1 (x:x8) = x : take (1i-1) xs

take 3 "words"

"w’ : take 2 "ords"
i "w’ ¢ ("o’ : take 1 "rds")
) "w' oo ("o’ ¢ ('r" : take 0 "ds"))
) "w’ ("of ("xr’ [1))

The infinite case

take :: Int -> [a] —-—> [a]

take 0 xs =[]

take 1 [] =[]

take 1 (x:x8) = x : take (1i-1) xs

takeComp :: Int —-> [a] —> [a]

takeComp 1 xs = [x | (3,x) <= zip [0..] xs,] < 1

Prelude> take 3 [10..]
[10,11,12]

Prelude> takeComp 3 [10..]
[10,11,12 —— computation goes on forever!

The 1nfinite case explained

Function t akeComp 1s equivalent to takeCompRec.

takeCompRec :: Int —-> [a] —> [a]
takeCompRec 1 xs = helper 0 1 xs
where
helper 7 1 []
helper jJ 1 (x:xs) | J > 1
| otherwise

takeCompRec 3 [10..]
helper 0 3 [10..]
10 : helper 1 3 [11..]

10 ¢ (11 : helper 2 3 [12..])

10 : (11 : (12 : helper 3 3 [13..

10 ¢ (11 : (12 : helper 4 3 [14..

X : helper

helper

(3+1)

(J+1)

1 Xs

1 XS

Part IV

Arithmetic

Arithmetic (recursion)

(+) Int —> Int —> Int
m+ 0 = m

m + = (m + (n—-1)) + 1
() Int -> Int —-> Int
mx 0 = 0

m * = (m « (n—-1)) + m
(") :: Int —> Int -> Int
m -~ 0 = 1

m n = (m = (n=-1)) * m

How arithmetic works (recursion)

(+) Int —> Int —-> Int
m+ 0 = m
m + n = (m + (n=-1)) + 1
2 + 3
(2 + 2) + 1
((2 + 1) + 1) + 1

(((2 +0) + 1) + 1) + 1

((2 + 1) + 1) + 1

Giuseppe Peano (1858-1932)

The definition of the natural numbers 1s named the Peano axioms in his honour.
Made key contributions to the modern treatment of mathematical induction.

