
Informatics 1
Functional Programming Lecture 5

Tuesday 23 September 2014

More fun with recursion

Don Sannella
University of Edinburgh

Tutorials

Attendance is compulsory.

Tuesday/Wednesday Computation and Logic

Thursday/Friday Functional Programming

You must do each week’s tutorial exercise! Do it before the tutorial!

Bring a printout of your work to the tutorial!

You may collaborate, but you are responsible for knowing the material.

Mark of 0% on tutorial exercises means you have no incentive to plagiarize.

But you will fail the exam if you don’t do the tutorial exercises!

Start work on the tutorial as early as possible.

Required text and reading

Haskell: The Craft of Functional Programming (Third Edition),
Simon Thompson, Addison-Wesley, 2011.

or

Learn You a Haskell for Great Good!
Miran Lipovača, No Starch Press, 2011.

Reading assignment

Monday 15 September 2014 Thompson: parts of Chap. 1–3 and 5

Lipovača: parts of intro, Chap. 1–2

Monday 22 September 2014 Thompson: parts of Chap. 3–7

Lipovača: parts of Chap. 1, 3–4

The assigned reading covers the material very well with plenty of examples.

There will be no lecture notes, just the books. Get one of them and read it!

Part I

Booleans and characters

Boolean operators
not :: Bool -> Bool
(&&), (||) :: Bool -> Bool -> Bool

not False = True
not True = False

False && False = False
False && True = False
True && False = False
True && True = True

False || False = False
False || True = True
True || False = True
True || True = True

Defining operations on characters
isLower :: Char -> Bool
isLower x = ’a’ <= x && x <= ’z’

isUpper :: Char -> Bool
isUpper x = ’A’ <= x && x <= ’Z’

isDigit :: Char -> Bool
isDigit x = ’0’ <= x && x <= ’9’

isAlpha :: Char -> Bool
isAlpha x = isLower x || isUpper x

Defining operations on characters
digitToInt :: Char -> Int
digitToInt c | isDigit c = ord c - ord ’0’

intToDigit :: Int -> Char
intToDigit d | 0 <= d && d <= 9 = chr (ord ’0’ + d)

toLower :: Char -> Char
toLower c | isUpper c = chr (ord c - ord ’A’ + ord ’a’)

| otherwise = c

toUpper :: Char -> Char
toUpper c | isLower c = chr (ord c - ord ’a’ + ord ’A’)

| otherwise = c

These rely on the conversion functions:

ord :: Char -> Int -- same as: fromEnum :: Char -> Int
chr :: Int -> Char -- same as: toEnum :: Int -> Char

Part II

Conditionals and Associativity

Conditional equations
max :: Int -> Int -> Int
max x y | x >= y = x

| y >= x = y

max3 :: Int -> Int -> Int -> Int
max3 x y z | x >= y && x >= z = x

| y >= x && y >= z = y
| z >= x && z >= y = z

Conditional equations with otherwise
max :: Int -> Int -> Int
max x y | x >= y = x

| otherwise = y

max3 :: Int -> Int -> Int -> Int
max3 x y z | x >= y && x >= z = x

| y >= x && y >= z = y
| otherwise = z

Conditional equations with otherwise
max :: Int -> Int -> Int
max x y | x >= y = x

| otherwise = y

max3 :: Int -> Int -> Int -> Int
max3 x y z | x >= y && x >= z = x

| y >= x && y >= z = y
| otherwise = z

otherwise :: Bool
otherwise = True

Conditional expressions
max :: Int -> Int -> Int
max x y = if x >= y then x else y

max3 :: Int -> Int -> Int -> Int
max3 x y z = if x >= y && x >= z then x

else if y >= x && y >= z then y
else z

Another way to define max3
max3 :: Int -> Int -> Int -> Int
max3 x y z = if x >= y then

if x >= z then x else z
else

if y >= z then y else z

Key points about conditionals
• As always: write your program in a form that is easy to read. Don’t worry

(yet) about efficiency: premature optimization is the root of much evil.

• Conditionals are your friend: without them, programs could do very little that
is interesting.

• Conditionals are your enemy: each conditional doubles the number of test
cases you must consider. A program with five two-way conditionals requires
25 = 32 test cases to try every path through the program. A program with ten
two-way conditionals requires 210 = 1024 test cases.

A better way to define max3
max3 :: Int -> Int -> Int -> Int
max3 x y z = max (max x y) z

An even better way to define max3
max3 :: Int -> Int -> Int -> Int
max3 x y z = x ‘max‘ y ‘max‘ z

max :: Int -> Int -> Int
max x y | x >= y = x

| otherwise = y

An even better way to define max3
max3 :: Int -> Int -> Int -> Int
max3 x y z = x ‘max‘ y ‘max‘ z

max :: Int -> Int -> Int
x ‘max‘ y | x >= y = x

| otherwise = y

x + y stands for (+) x y
x >= y stands for (>=) x y
x ‘max‘ y stands for max x y

Associativity
prop_max_assoc :: Int -> Int -> Int -> Bool
prop_max_assoc x y z =

(x ‘max‘ y) ‘max‘ z == x ‘max‘ (y ‘max‘ z)

It doesn’t matter where the parentheses go with an associative operator, so we
often omit them.

Associativity
prop_max_assoc :: Int -> Int -> Int -> Bool
prop_max_assoc x y z =

(x ‘max‘ y) ‘max‘ z == x ‘max‘ (y ‘max‘ z)

It doesn’t matter where the parentheses go with an associative operator, so we
often omit them.

Why we use infix notation
prop_max_assoc :: Int -> Int -> Int -> Bool
prop_max_assoc x y z =

max (max x y) z == max x (max y z)

This is much harder to read than infix notation!

Key points about associativity
• There are a few key properties about operators: associativity, identity,

commutativity, distributivity, zero, idempotence. You should know and
understand these properties.

• When you meet a new operator, the first question you should ask is “Is it
associative?” The second is “Does it have an identity?”

• Associativity is our friend, because it means we don’t need to worry about
parentheses. The program is easier to read.

• Associativity is our friend, because it is key to writing programs that run
twice as fast on dual-core machines, and a thousand times as fast on machines
with a thousand cores. We will study this later in the course.

Part III

Append

Append
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

"abc" ++ "de"
=

(’a’ : (’b’ : (’c’ : []))) ++ (’d’ : (’e’ : []))
=

’a’ : ((’b’ : (’c’ : [])) ++ (’d’ : (’e’ : [])))
=

’a’ : (’b’ : ((’c’ : []) ++ (’d’ : (’e’ : []))))
=

’a’ : (’b’ : (’c’ : ([] ++ (’d’ : (’e’ : [])))))
=

’a’ : (’b’ : (’c’ : (’d’ : (’e’ : []))))
=

"abcde"

Append
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

"abc" ++ "de"
=

’a’ : ("bc" ++ "de")
=

’a’ : (’b’ : ("c" ++ "de"))
=

’a’ : (’b’ : (’c’ : ("" ++ "de")))
=

’a’ : (’b’ : (’c’ : "de"))
=

"abcde"

Properties of append
prop_append_assoc :: [Int] -> [Int] -> [Int] -> Bool
prop_append_assoc xs ys zs =

(xs ++ ys) ++ zs == xs ++ (ys ++ zs)

prop_append_ident :: [Int] -> Bool
prop_append_ident xs =

xs ++ [] == xs && xs == [] ++ xs

prop_append_cons :: Int -> [Int] -> Bool
prop_append_cons x xs =

[x] ++ xs == x : xs

Efficiency
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

"abc" ++ "de"
=

’a’ : ("bc" ++ "de")
=

’a’ : (’b’ : ("c" ++ "de"))
=

’a’ : (’b’ : (’c’ : ("" ++ "de")))
=

’a’ : (’b’ : (’c’ : "de"))
=

"abcde"

Computing xs ++ ys takes about n steps, where n is the length of xs.

A useful fact
-- prop_sum.hs
import Test.QuickCheck

prop_sum :: Integer -> Property
prop_sum n = n >= 0 ==> sum [1..n] == n * (n+1) ‘div‘ 2

[melchior]dts: ghci prop_sum.hs
GHCi, version 6.8.3: http://www.haskell.org/ghc/ :? for help

*Main> quickCheck prop_sum
+++ OK, passed 100 tests.

*Main>

Associativity and Efficiency: Left vs. Right
Compare computing (associated to the left)

((xs1 ++ xs2) ++ xs3) ++ xs4

with computing (associated to the right)

xs1 ++ (xs2 ++ (xs3 ++ xs4))

where n1, n2, n3, n4 are the lengths of xs1,xs2,xs3,xs4.
Associating to the left takes

n1 + (n1 + n2) + (n1 + n2 + n3)

steps. If we have m lists of length n, it takes about m2n steps.
Associating to the right takes

n1 + n2 + n3

steps. If we have m lists of length n, it takes about mn steps.

When m = 1000, the first is a thousand times slower than the second!

Associativity and Efficiency: Sequential vs. Parallel
Compare computing (sequential)

x1 + (x2 + (x3 + (x4 + (x5 + (x6 + (x7 + x8))))))

with computing (parallel)

((x1 + x2) + (x3 + x4)) + ((x5 + x6) + (x7 + x8))

In sequence, summing 8 numbers takes 7 steps.
If we have m numbers it takes m− 1 steps.

In parallel, summing 8 numbers takes 3 steps.

x1 + x2 and x3 + x4 and x5 + x6 and x7 + x8

(x1 + x2) + (x3 + x4) and (x5 + x6) + (x7 + x8),

((x1 + x2) + (x3 + x4)) + ((x5 + x6) + (x7 + x8))

If we have m numbers it takes log2 m steps.

When m = 1000, the first is a hundred times slower than the second!

