
Informatics 1
Functional Programming Lecture 3

Thursday 18 September 2014

Lists and Comprehensions

Don Sannella
University of Edinburgh

Part I

List Comprehensions

Lists — Some examples
someNumbers :: [Integer]
someNumbers = [1,2,3]

someChars :: [Char]
-- equivalent: someChars :: String

someChars = [’I’,’n’,’f’,’1’]
-- equivalent: someChars = "Inf1"

someLists :: [[Integer]]
someLists = [[1],[2,4,2],[],[3,5]]

someFunctions :: [Picture -> Picture]
someFunctions = [invert,flipV]

someStuff = [1,"Inf1",[2,3]] -- type error!

someMoreNumbers :: [Integer]
someMoreNumbers = [1..10]

List comprehensions — Generators
Prelude> [x*x | x <- [1,2,3]]
[1,4,9]

Prelude> [toLower c | c <- "Hello, World!"]
"hello, world!"

Prelude> [(x, even x) | x <- [1,2,3]]
[(1,False),(2,True),(3,False)]

x <- [1,2,3] is called a generator

<- is pronounced drawn from

List comprehensions — Guards
Prelude> [x | x <- [1,2,3], odd x]
[1,3]

Prelude> [x*x | x <- [1,2,3], odd x]
[1,9]

Prelude> [x | x <- [42,-5,24,0,-3], x > 0]
[42,24]

Prelude> [toLower c | c <- "Hello, World!", isAlpha c]
"helloworld"

odd x is called a guard

Sum, Product
Prelude> sum [1,2,3]
6

Prelude> sum []
0

Prelude> sum [x*x | x <- [1,2,3], odd x]
10

Prelude> product [1,2,3,4]
24

Prelude> product []
1

Prelude> let factorial n = product [1..n]
Prelude> factorial 4
24

Example uses of comprehensions
squares :: [Integer] -> [Integer]
squares xs = [x*x | x <- xs]

odds :: [Integer] -> [Integer]
odds xs = [x | x <- xs, odd x]

sumSqOdd :: [Integer] -> Integer
sumSqOdd xs = sum [x*x | x <- xs, odd x]

QuickCheck
-- sumSqOdd.hs

import Test.QuickCheck

squares :: [Integer] -> [Integer]
squares xs = [x*x | x <- xs]

odds :: [Integer] -> [Integer]
odds xs = [x | x <- xs, odd x]

sumSqOdd :: [Integer] -> Integer
sumSqOdd xs = sum [x*x | x <- xs, odd x]

prop_sumSqOdd :: [Integer] -> Bool
prop_sumSqOdd xs = sum (squares (odds xs)) == sumSqOdd xs

Running QuickCheck
[melchior]dts: ghci sumSqOdd.hs
GHCi, version 6.8.3: http://www.haskell.org/ghc/ :? for help
Loading package base ... linking ... done.
[1 of 1] Compiling Main (sumSqOdd.hs, interpreted)

*Main> quickCheck prop_sumSqOdd
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package random-1.0.0.0 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
Loading package QuickCheck-2.1 ... linking ... done.
+++ OK, passed 100 tests.

*Main>

