Informatics 1 Functional Programming Lecture 8 Tuesday 22 October 2013

Lambda expressions, functions and binding

Don Sannella
University of Edinburgh

Tutorials—revision tutorials

Every Monday 1–2pm and Wednesday 2–3pm Appleton Tower, Computer Lab West (5.05)

Attempt the revision tutorial exercise *in advance*.

*Print out and bring your solutions.

Part I

Lambda expressions

A failed attempt to simplify

```
f:: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))
    where
    sqr x = x * x
    pos x = x > 0
```

The above *cannot* be simplified to the following:

```
f:: [Int] \rightarrow Int
f xs = foldr (+) 0 (map (x * x) (filter (x > 0) xs))
```

A successful attempt to simplify

```
f:: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))
    where
    sqr x = x * x
    pos x = x > 0
```

The above *can* be simplified to the following:

Lambda calculus

The character \setminus stands for λ , the Greek letter *lambda*.

Logicians write

$$\xspace x -> x > 0$$
 as $\lambda x. x > 0$
 $\xspace x -> x * x$ as $\lambda x. x \times x$.

Lambda calculus is due to the logician *Alonzo Church* (1903–1995).

Evaluating lambda expressions

```
(\x -> x > 0) 3
   let x = 3 in x > 0
=
  3 > 0
=
   True
  (\x -> x * x) 3
 let x = 3 in x * x
 3 * 3
=
```

Lambda expressions and currying

```
(\x -> \y -> x + y) 3 4

=
  ((\x -> (\y -> x + y)) 3) 4

=
  (let x = 3 in \y -> x + y) 4

=
  (\y -> 3 + y) 4

=
  let y = 4 in 3 + y

=
  3 + 4

=
  7
```

Evaluating lambda expressions

The general rule for evaluating lambda expressions is

$$(\lambda x. N) M$$
 =
$$(\operatorname{let} x = M \operatorname{in} N)$$

This is sometimes called the β rule (or beta rule).

Part II

Sections

Sections

```
(> 0) is shorthand for (\x -> x > 0)

(2 *) is shorthand for (\x -> 2 * x)

(+ 1) is shorthand for (\x -> x + 1)

(2 ^) is shorthand for (\x -> x ^2 x)

(^ 2) is shorthand for (\x -> x ^2 x)
```

Sections

Part III

Composition

Composition

```
(.) :: (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)
(f . g) x = f (g x)
```

Evaluating composition

```
(.) :: (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)
(f \cdot g) \times = f (g \times g)
sqr :: Int -> Int
sqr x = x * x
pos :: Int -> Bool
pos x = x > 0
(pos . sqr) 3
  pos (sqr 3)
pos 9
  True
```

Compare and contrast

Composition is associative

```
(f . g) . h = f . (g . h)

((f . g) . h) x

=
(f . g) (h x)

=
f (g (h x))

=
f ((g . h) x)

=
(f . (g . h)) x
```

Thinking functionally

```
f:: [Int] -> Int
f xs = foldr (+) 0 (map (^ 2) (filter (> 0) xs))

f :: [Int] -> Int
f = foldr (+) 0 . map (^ 2) . filter (> 0)
```

Applying the function

```
f :: [Int] -> Int
f = foldr(+) 0 . map(^2) . filter(> 0)
  f [1, -2, 3]
=
   (foldr (+) 0 . map (^2) . filter (> 0)) [1, -2, 3]
=
   foldr (+) 0 (map (^{2}) (filter (> 0) [1, -2, 3]))
=
   foldr (+) 0 (map (^ 2) [1, 3])
=
   foldr (+) 0 [1, 9]
=
   10
```

Part IV

Variables and binding

Variables

```
x = 2
y = x+1
z = x+y*y

*Main> z
11
```

Part V

Lambda expressions explain binding

Lambda expressions explain binding

A variable binding can be rewritten using a lambda expression and an application:

$$(N \ ext{where} \ x = M)$$
 $=$ $(\lambda x. \, N) \, M$ $=$ $(\operatorname{let} x = M \operatorname{in} N)$

A function binding can be written using an application on the left or a lambda expression on the right:

$$(M \ {\tt where} \ f \ x = N)$$

$$=$$

$$(M \ {\tt where} \ f = \lambda x. \ N)$$

Lambda expressions and binding constructs

```
f 2
     where
     f x = x+y*y
           where
            y = x+1
=
     f 2
     where
     f = \langle x \rangle (x+y+y) \text{ where } y = x+1)
=
     f 2.
     where
     f = \langle x - \rangle ((\langle y - \rangle x + y * y) (x+1))
=
     (\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))
```

Evaluating lambda expressions