Informatics 1

Functional Programming Lecture 8
Tuesday 22 October 2013

LLambda expressions, functions and
binding

Don Sannella

University of Edinburgh



Tutorials—revision tutorials

Every Monday 1-2pm and Wednesday 2-3pm
Appleton Tower, Computer Lab West (5.05)

Attempt the revision tutorial exercise in advance.

Print out and bring your solutions.



Part 1

Lambda expressions



A failed attempt to simplify

f :: [Int] —-> Int

f xs = foldr (+) O (map sqr (filter pos xs))
where
sgr X = X * X
pos x = x >0

The above cannot be simplified to the following:

f :: [Int] —-> Int
f xs = foldr (+) 0 (map (x » x) (filter (x > 0) xs))



A successful attempt to simplify

f :: [Int] —-> Int

f xs = foldr (+) O (map sqr (filter pos xs))
where
sgr X = X * X
pos x = x >0

The above can be simplified to the following:

f :: [Int] —-> Int
f xs = foldr (+) O
(map (\x —> x * X)
(filter (\x -> x > 0) xs))



[LLambda calculus

f :: [Int] —-> Int
f xs = foldr (+) O
(map (\x —> x * X)
(filter (\x -> x > 0) xs))

The character \ stands for \, the Greek letter lambda.

Logicians write
\x —> x >0 as Azr.x >0

\X —> X * X aS A\r.x X x.

Lambda calculus is due to the logician Alonzo Church (1903-1995).



Evaluating lambda expressions
(\x => x > 0) 3

let x = 3 in x > 0
3 >0

True

(\x —> x * x) 3
let x = 3 1n x * X
3 x 3

9



Lambda expressions and currying
(\x —> \y —> x + vy) 3 4

((\x —> (\y —> x + vy)) 3) 4
(let x = 3 in \y —> x + y) 4
(\y —> 3 + vy) 4

let v = 4 in 3 + vy

3 + 4

7



Evaluating lambda expressions

The general rule for evaluating lambda expressions is

(Ax. N) M

(letx =M in N)

This is sometimes called the (3 rule (or beta rule).



Part 11

Sections



Sections

(>

0)

1s shorthand for (\x ->
1s shorthand for (\x —>
1s shorthand for (\x —>
1s shorthand for (\x ->

1s shorthand for (\x —>



Sections

f :: [Int] —-> Int
f xs = foldr (+) O
(map (\x —> x * X)
(filter (\x -> x > 0) xs))

f :: [Int] —-> Int
f xs = foldr (+) 0O (map (° 2) (filter (> 0) xs))



Part 111

Composition



Composition

(.) 22 (b > ¢c) —> (a —> b) —> (a —> <)
(f . g9) x = £ (g x)



Evaluating composition

(.) 22 (b > c) —> (a —> b) —> (a —> <)

(£ .. g9) x = £ (g x)
sgr :: Int —-> Int
sgr X = X * X

pos :: Int —-> Bool
pos x = x > 0

(pos . sqgr) 3
pos (sgr 3)
pos 9

True



Compare and contrast

possgr :: Int —-> Bool
possgr X = pos (sgr x)

possgr 3
pos (sgr 3)
pos 9

True

possgr :: Int —-> Bool
possgr = PpPOs . sgr
possgr 3

(pos . sqgr) 3

pos (sgr 3)

pos 9

True



Composition 1s associative



Thinking functionally

f :: [Int] —-> Int
f xs = foldr (+) 0O (map (° 2) (filter (> 0) xs))
f :: [Int] —-> Int

f = foldr (+) O . map (° 2) . filter (> 0)



Applying the function

f :: [Int] —-> Int
f = foldr (+) O . map (° 2) . filter (> 0)

(foldr (+) 0 . map (° 2) . filter (> 0))
foldr (+) 0 (map (° 2) (filter (> 0) [1,
foldr (+) 0 (map (~ 2) [1, 31)



Part IV

Variables and binding



Variables

X

Y
Z

2
x+1

X+y*y

*Main> z

11



Part V

Lambda expressions explain binding



Lambda expressions explain binding

A variable binding can be rewritten using a lambda expression and an application:

(N wherexz = M)
(Az. N) M

(letx =M in N)

A function binding can be written using an application on the left or a lambda
expression on the right:

(M where fx = N)

(M where f = Axz. N)



Lambda expressions and binding constructs

f 2

where

f x = xt+tyxy
where
y = x+1

f 2
where
f = \x —> (x+y*xy where y = x+1)

f 2
where
f = \x -> ((\y —> xt+ty*y) (x+1))

(\f —> £ 2) (\x —> ((\y —> xtyxy) (x+1)))



Evaluating lambda expressions
(\f —> £ 2) (\x => ((\y —> x+y*y) (x+1)))

(\x > ((\y —> xtyry) (x+1))) 2
(\y —> 2+y*y) (2+1)

(\y —> 2+y*y) 3

2+3%3

11



