Informatics 1

Functional Programming Lecture 7
Monday 7 October 2013

Map, filter, fold

Don Sannella

University of Edinburgh

Required text and reading

Haskell: The Craft of Functional Programming (Third Edition),
Simon Thompson, Addison-Wesley, 2011.
or

Learn You a Haskell for Great Good!
Miran Lipovaca, No Starch Press, 2011.

Reading assignment

Monday 23 September 2013 Thompson: parts of Chap. 1-3 and 5
Lipovaca: parts of intro, Chap. 1-3
Monday 30 September 2013 Thompson: parts of Chap. 4-7 and 17
Lipovaca: rest of Chap. 1 and 3, Chap. 4
Monday 7 October 2013 Thompson: parts of Chap. 10 and 11
Lipovaca: Chap. 5
The assigned reading covers the material very well with plenty of examples.

There will be no lecture notes, just the books. Get one of them and read it!

Tutorials—revision tutorials

Every Wednesday starting 2-3pm Wednesday 9th October
Appleton Tower, Computer Lab West (5.05)

Attempt the 2012 class test in advance.
Print out and bring your solutions.

Class test

2:10-3:00pm Monday 21 October 2013
George Square Lecture Theatre

Past exams available on website
http://www.inf.ed.ac.uk/teaching/courses/inf1/fp/

Part 1

List comprehensions, revisited

Evaluating a list comprehension: generator
[x*x | x <= [1..3]]

[1«1] ++ [2%2] ++ [3%3]

Evaluating a list comprehension: generator and filter
[x*xx | x <= [1..3], odd x]

[11 | odd 1] ++ [2x2 | odd 2] ++ [3%3 | odd 3]
[1 | True] ++ [4 | False | ++ [9 | True |

[1] ++ [] t+ [9]

Evaluating a list comprehension: two generators
[(i,3) | i <= [1..3], J <= [i..3]]
[(1,3) | 3 <= [1..31 1 ++
[(2,3) | 3 <= [2..3] 1 ++
[(3,3 | 3 <= [3..3]]

[(1, 1)] ++ [(1,2)] ++ [(1,3) 1 ++

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Another example

[(1,3) | 1 <=
[(]—rj) | j <-
[(2,3) | 73 <=
[(313) | j <-

[(1,1) |1<=1] ++
[(2,1) |2<=1] ++
[(3,1) |3<=1] ++

[(1,1)] ++ [(1,
[] ++
[] ++ []

J <= [1..3], 1 <=
1 <= 3 1 ++

2 <= 73 1 ++

3 <=5]

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Defining list comprehensions

q =z 1,q]|bq]|~

[e | *]

= le]

[elx— [l1, ..., ln],q]

= (letz=hLin[elql)++ ---++(letx=I,in[e] q])
[elb, q]

= ifbthen [e | q] else []

Another example, revisited
[(1,73) | 1 <= [1..3], 7 <= [1..3], 1 <= 73, =*
[(]—rj) | j <- [1-3]/ 1 <= jr

*
[(2,3) | 3 <= [1..3], 2 <=3, =] ++
[(3,3) | 3 <= [1..3], 3 <=3, %

[(1,1)11<=1,%] ++ [(1,2)|1<=2,*] ++ [(1,3)|1l<=
[(2,1) l2<=1,x] ++ [(2,2) |2<=2,*] ++ [(2,3) |2<=
[(3, 1) 13<=1,x] ++ [(3,2)|3<=2,*] ++ [(3,3)[3<=

[(1,1) =] ++ [(1,2) %] ++ [(1,3)|*] ++
[] t+ [(2,2) [] ++ [(2,3)] ++

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Part 11

Map

Squares

x*Main> squares [1,-2, 3]

[1,4,9]

squares :: [Int] —-> [Int]
squares xs = [x*xXx | x <= x5]
squares :: [Int] —-> [Int]
squares [] =[]

squares (xXx:xXs) = X*xX : sguares XS

Ords

*Main> ords "a2c3"
[97,50,99,51]

ords :: [Char] —-> [Int]

ords xXs = [ord x | x <= xXs]
ords :: [Char] —-> [Int]

ords [] =[]

ords (x:xXs) = ord x : ords XxXs

map
map

map
map
map

Hho Hh e

(a —> Db)
Xs = [

(x:xX83) =

—> [b]
<- X8]
—> [b]

Squares, revisited

x*Main> squares [1,-2, 3]

[1,4,9]
squares :: [Int] —-> [Int]
squares xs = [x*xXx | x <= x5]
squares :: [Int] —-> [Int]
squares [] =[]
squares (xXx:xXs) = X*xX : sguares XS
squares :: [Int] —-> [Int]
squares Xs = map SJdr XS
where

sSgr X = X*X

Map—how 1t works

map :: (a —> b) -> [a] —-> [Db]
map f xs = [£ x | x <= x5]

map sqr [1,2,3]
[sgr x | x <- [1,2,3]]

[sgr 1] ++ [sgr 2] ++ [sqgr 3]

Map—how 1t works

map :: (a —> b) -> [a] —-> [Db]
map £ [] =[]
map f (x:xs) = f x : map f xs

map sqgr [1,2,3]

map sqgr (1 : (2 : (3 : [1)))

sqr 1 : map sqgr (2 : (3 : [1))

sqgr 1 : (sqr 2 : map sqr (3 : []))

sgr 1 : (sqr 2 : (sgqr 3 : map sqgr []))

sgqr 1 : (sgr 2 : (sgr 3 : []))

Ords, revisited

*Main> ords "a2c3"
[97,50,99,51]

ords :: [Char] —-> [Int]

ords xs = [ord x | x <= xXs]
ords :: [Char] —-> [Int]

ords [] =[]

ords (x:xXs) = ord x : ords XxXs
ords :: [Char] —-> [Int]

ords xs = map ord xs

Part 111

Filter

Positives

x*Main> positives [1,-2, 3]

[1, 3]

positives :: [Int] —> [Int]

positives xs = [X | x <— x5, x > 0]

positives :: [Int] —> [Int]

positives [] =[]

positives (x:xs) | x > 0 = X : positives Xxs

| otherwise = ©positives xs

Digits

*Main> digits "a2c3"

"23"

digits :: [Char] —> [Char]

digits xs = [x | x <= xs, 1isDigit x]
digits :: [Char] —-> [Char]

digits [] =[]

digits (x:xs) | isDigit x = x : digits xs

| otherwise = digits xs

Filter

filter :: (a —-> Bool) —-> [a] —-> [a]

filter p xs = [X | x <= X8, p x]

filter :: (a —> Bool) —-—> [a] —-> [a]

filter p [] =[]

filter p (x:xs) | p X = x : filter p xs

| otherwise = filter p xs

Positives, revisited

x*Main> positives [1,-2, 3]

[1,3]
positives :: [Int] —> [Int]
positives xs = [x | x <= x5, x > 0]
positives :: [Int] —-> [Int]
positives [] =[]
positives (x:xs) | x > 0 = X : positives Xxs
| otherwise = ©positives xs
positives :: [Int] -> [Int]
positives xs = filter pos xs
where

pos x = x >0

Digits, revisited

*Main> digits "a2c3"

"23"

digits :: [Char] —> [Char]

digits xs = [x | x <= xs, 1isDigit x]

digits :: [Char] —-> [Char]

digits [] =[]

digits (x:xs) | isDigit x = x : digits xs
| otherwise = digits xs

digits :: [Char] —-> [Char]

digits xs = filter 1sDigit xs

Part IV

Fold

Sum

*Main> sum [1,2,3,4]
10

sum :: [Int] —-> Int
sum [] = 0
sum (xX:xs) = X 4+ sum XS

Product

x*Main> product [1,2, 3, 4]
24

product :: [Int] —-> Int
product [] = 1
product (x:xs) = x * product xs

Concatenate

*Main> concat [[1,2,3],[4,65]]
[112131415]

*Main> concat ["con", "cat", "en", "ate"]
"concatenate"

concat :: [[a]] —-—> [a]
concat [] = []
concat (xs:xss) = XS ++ concat xss

Foldr

foldr :: (a —> a -—> a) —-> a —-—> [a] —-—> a
foldr £ a [] = a
foldr £ a (x:xs8) = f x (foldr £ a xs)

Foldr, with infix notation

foldr :: (a —> a -—> a) —-> a —-—> [a] —-—> a
foldr £ a [] = a
foldr £ a (x:xs8) = x ‘f£f' (foldr £ a xs)

Sum, revisited

*Main> sum [1,2,3,4]

10

sum :: [Int] —-> Int

sum [] = 0

sum (xX:xs) = X 4+ sum XS
sum :: [Int] —-> Int

sum xs = foldr (+) 0 xs

Recall that (+) 1s the name of the addition function,
so x + y and (+) x y areequivalent.

Sum, Product, Concat

sum :: [Int] —-> Int

sum xs = foldr (+) 0 xs
product :: [Int] —-> Int
product xs = foldr (%) 1 xs
concat o [[a]]l —> [a]

concat xs = foldr (++) [] Xxs

Sum—how it works

sum :: [Int] —-> Int

sum [] = 0

sum (xX:xs) = X + sum XS
sum [1,2]

sum (1 : (2 : []))

1 + sum (2 : [1])

1 + (2 4+ sum [])

1 + (2 + 0)

Sum—how 1t works, revisited

foldr :: (a —> a -—> a) —-> a —-—> [a] —-—> a
foldr £ a [] = a

foldr £ a (x:xs8) = x ‘f£f' (foldr £ a xs)
sum :: [Int] —-> Int

sum xs = foldr (+) 0 xs

sum [1,2]

foldr (+) 0 [1,2]

foldr (+) 0 (1 : (2 : []))

1 + (foldr (+) 0 (2 : [1))

1 + (2 + (foldr (+) 0 []))

1 + (2 + 0)

Part V

Map, Filter, and Fold
All together now!

Sum of Squares of Positives

f :: [Int] —-> Int
f xs = sum (squares (positives xs))
f :: [Int] —-> Int
f xXs = sum [x*X | X <= x5, X > 0]
f :: [Int] —-> Int
£ [] =[]
f (x:x8)
| x > 0 = (x*x) + f xs
| otherwise = f xs
f :: [Int] —-> Int
f xs = foldr (+) O (map sqgr (filter pos xs))
where
sgqr x = X * X
pos x = x > 0

Part VI

Currying

How to add two numbers

add :: Int —> Int —-> Int
add x y = x + vy

add 3 4
3 + 4

.

How to add two numbers

add :: Int —> (Int —-> Int)
(add x) v = x + vy

(add 3) 4

3+ 4

A function of two numbers
1s the same as
a function of the first number that returns
a function of the second number.

Currying

add :: Int —-> (Int —-> Int)
add x = g
where
gy = X tY
(add 3) 4
g 4
where

gy =3 +y

A function of two numbers
1s the same as
a function of the first number that returns
a function of the second number.

Currying

add :: Int —> Int —-> Int
add x yv = x + vy

means the same as

add :: Int —-> (Int —-> Int)
add x = g
where
gy = X tY
and
add 3 4

means the same as

(add 3) 4

This idea is named for Haskell Curry (1900-1982).
It also appears in the work of Moses Schonfinkel (1889-1942),
and Gottlob Frege (1848—1925).

Putting currying to work

foldr :: (a —> a -—> a) —-> a —-—> [a] —-—> a
foldr £ a [] = a

foldr £ a (x:xs8) = f x (foldr £ a xs)
sum :: [Int] —-> Int

sum xs = foldr (+) 0 xs

1s equivalent to

foldr :: (a —> a -> a) —-> a —> ([a] —-> a)
foldr £ a [] = a
foldr £ a (x:xs) = f x (foldr £ a xs)

sum :: [Int] —> Int
sum = foldr (+) O

Compare and contrast

sum :: [Int] —-> Int
sum xs = foldr (+) 0 xs

sum [1,2,3,4]

foldr (+) 0 [1,2,3,4]

sum :: [Int]

sum = foldr

—> Int

(+)

sum [1,2,3,4]

(foldr

(+)

0)

0

[1,2,3,4]

Sum, Product, Concat

sum :: [Int] —-> Int

sum = foldr (+) O
product :: [Int] —> Int
product = foldr (x) 1
concat o [[a]]l —> [a]

concat = foldr (++) []

