Informatics 1

Functional Programming Lecture 4
Monday 30 September 2013

[ists and Recursion

Don Sannella

University of Edinburgh

Part 1

[ists and Recursion

Cons and append

Cons takes an element and a list.
Append takes two lists.

(:) a —> [a] —> [a]

(++) [a] => [a] —> [a]
1 : [2,3] = [1,2,3]
[1] ++ [2, 3] = [1,2,3]
[1,2] ++ [3] = [1,2,3]
717 . M"ist" = "list"
"1" 44 "ist" = "list"
"1i" +4+ "st" = "list"
[1] : [2,3] ——
1 ++ [2,3] ——
[1,2] ++ 3 —=
"1 . "ist" ——

717 44 "ist" -

type
type
type
type
type

(:) 1s pronounced cons, for construct

(++) 1s pronounced append

error!
error!
error!
error!
error!

Lists

Every list can be written using only (:) and [].

[(1,2,31 = 1 (2 :+ (3 : []))

"list™" — [’l’,’i’,’S’,’t’]
— r1r . (’i’ . (ISI . (/t/ . [])>)

A recursive definition: A [ist 1s either
e empty, written [], or

e constructed, written x : xs, with head x (an element), and tail xs (a list).

A list of numbers

Prelude> null
False
Prelude> head
1

Prelude> tail
[2,3]
Prelude> null
False
Prelude> head
2

Prelude> tail
[3]

Prelude> null
False
Prelude> head
3

Prelude> tail
[]

Prelude> null
True

[1,2,3]

[1,2,3]

[1,2,3]

[2,3]

[2,3]

[2,3]

[3]

[3]

[3]

[]

Part 11

Mapping: Square every element of a list

Two styles of definition—squares

Comprehension
squares :: [Integer] —-> [Integer]
squares xs = [x*x | x <— xs]
Recursion
squaresRec :: [Integer] —> [Integer]
squaresRec [] = []

squaresRec (x:xs) = xX*X : squaresRec xs

Pattern matching and conditionals

Pattern matching

squaresRec :: [Integer] —> [Integer]
squaresRec [] = []
squaresRec (x:x5) = X*X : squaresRec xs

Conditionals with binding

squaresCond :: [Integer] —> [Integer]
squaresCond ws =
if null ws then

[]

else
let

X = head ws

Xs = tail ws
in

X*xX : squaresCond xs

How recursion works—squaresRec

squaresRec :: [Integer] —> [Integer]
squaresRec [] =[]
squaresRec (x:xs) = X*xX : squaresRec xs

squaresRec [1,2, 3]

How recursion works—squaresRec

squaresRec :: [Integer] —> [Integer]
squaresRec [] =[]
squaresRec (x:xs) = X*xX : squaresRec xs

squaresRec [1,2, 3]

squaresRec (1 : (2 : (3 : [1)))

How recursion works—squaresRec

squaresRec :: [Integer] —> [Integer]
squaresRec [] =[]
squaresRec (x:xs) = X*xX : squaresRec xs

squaresRec [1,2, 3]

squaresRec (1 : (2 : (3 : [1)))
= { x=1, xs = (2 : (3 : [])) }
1x1 : squaresRec (2 : (3 : [1))

How recursion works—squaresRec

squaresRec :: [Integer] —> [Integer]
squaresRec [] =[]
squaresRec (x:xs) = X*xX : squaresRec xs

squaresRec [1,2, 3]

squaresRec (1 : (2 : (3 : [1)))
1x1 : squaresRec (2 : (3 : [1))
= { x =2, xs = (3 : [1) }

]
1«1 : (2x2 : squaresRec (3 : []))

How recursion works—squaresRec

squaresRec :: [Integer] —> [Integer]
squaresRec [] =[]
squaresRec (x:xs) = X*xX : squaresRec xs

squaresRec [1,2, 3]

squaresRec (1 : (2 : (3 : [1)))

1x1 : squaresRec (2 : (3 : [1))

1«1 : (2x2 : squaresRec (3 : []))
= { x =3, xs =[] }

1x1 : (2%x2 : (33 : squaresRec []))

How recursion works—squaresRec

squaresRec :: [Integer] —> [Integer]
squaresRec [] =[]
squaresRec (x:xs) = X*xX : squaresRec xs

squaresRec [1,2,3]

squaresRec (1 : (2 : (3 : [1)))

1x1 : squaresRec (2 : (3 : [1))

1«1 : (2%2 : squaresRec (3 : []))
1x1 : (2x2 : (3*x3 : squaresRec []))

1«1 : (2%x2 : (3*x3 : []1))

How recursion works—squaresRec

squaresRec :: [Integer] —> [Integer]
squaresRec [] =[]
squaresRec (x:xs) = X*xX : squaresRec xs

squaresRec [1,2,3]

squaresRec (1 : (2 : (3 : [1)))

1x1 : squaresRec (2 : (3 : [1))

1«1 : (2%2 : squaresRec (3 : []))
1x1 : (2%x2 : (3*x3 : squaresRec []))

1«1 = (2x2 : (3*x3 : []1))

How recursion works—squaresRec

squaresRec :: [Integer] —> [Integer]
squaresRec [] =[]
squaresRec (x:xs) = X*xX : squaresRec xs

squaresRec [1,2,3]

squaresRec (1 : (2 : (3 : [1)))

1x1 : squaresRec (2 : (3 : [1))

1«1 : (2%2 : squaresRec (3 : []))
1x1 : (2%x2 : (3*x3 : squaresRec []))
Ix1 ¢ (2x2 ¢ (3x3 ¢ []))

1 (4 (9« [1))

[1,4,9]

How recursion works—squaresRec

squaresRec :: [Integer] —> [Integer]
squaresRec [] =[]
squaresRec (x:xs) = X*xX : squaresRec xs

squaresRec [1,2,3]

squaresRec (1 : (2 : (3 : [1)))

1x1 : squaresRec (2 : (3 : [1))

1«1 : (2%2 : squaresRec (3 : []))
1x1 : (2%x2 : (3*x3 : squaresRec []))
Ix1 ¢ (2x2 ¢ (3x3 ¢ []))

1 (4 (9 [1))

[1,4,9]

QuickCheck

—— squares.hs
import Test.QuickCheck

squares :: [Integer] —-> [Integer]

squares Xs = [X*x | x <= xs]

squaresRec :: [Integer] —> [Integer]

squaresRec [] = []

squaresRec (x:xs) = x*X : squaresRec xs
prop_squares :: [Integer] —> Bool

prop_squares Xs = sguares xS == squaresRec Xxs

[Jitterbug]dts: gheci squares.hs

GHCi, version 7.4.2: http://www.haskell.org/ghc/ :? for help
x*Main> quickCheck prop_squares

+++ OK, passed 100 tests.

*Main>

Part 111

Filtering: Select odd elements from a list

Two styles of definition—odds

Comprehension

odds :: [Integer] —> [Integer]
odds xs = [x | X <= xs, 1s0dd x]

Recursion

oddsRec :: [Integer] —-> [Integer]

oddsRec [] = []

oddsRec (x:xs) | 1s0dd x = X : oddsRec xs
| otherwise = oddsRec xs

Pattern matching and conditionals

Pattern matching with guards

oddsRec :: [Integer] —> [Integer]

oddsRec [] = []

oddsRec (x:xs) | 1s0dd x = X : oddsRec xs
| otherwise = oddsRec xs

Conditionals with binding

oddsCond :: [Integer] —-> [Integer]
oddsCond ws =
1if null ws then
[]
else
let
X = head ws
Xs = tail ws
in
1f 1s0dd x then
X : oddsCond xs
else
oddsCond xs

How recursion works—oddsRec

oddsRec :: [Integer] —> [Integer]
oddsRec [] = []
oddsRec (x:xs) | 1s0dd x = X : oddsRec xs
| otherwise = oddsRec xs
oddsRec [1, 2, 3]

How recursion works—oddsRec

oddsRec :: [Integer] —> [Integer]

oddsRec [] = []

oddsRec (x:xs) | 1s0dd x = X : oddsRec xs
| otherwise = oddsRec xs

oddsRec [1,2, 3]

oddsRec (1 : (2 : (3 : [])))

How recursion works—oddsRec

oddsRec :: [Integer] —> [Integer]

oddsRec [] =[]

oddsRec (x:xs) | 1s0dd x = X : oddsRec xs
| otherwise = oddsRec xs

oddsRec [1, 2, 3]

oddsRec (1 : (2 : (3 : [])))
= { x =1, xs = (2 : (3 : [1]1)), 1is0Odd 1 = True }
1 : oddsRec (2 : (3 : []))

How recursion works—oddsRec

oddsRec :: [Integer] —> [Integer]

oddsRec [] =[]

oddsRec (x:xs) | 1s0dd x = X : oddsRec xs
| otherwise = oddsRec xs

oddsRec [1,2,3]
oddsRec (1 : (2 : (3 : []1)))
1 : oddsRec (2

(3 :
= { x =2, xs = (3 : []), 1s0dd 2 = False }
1 : oddsRec (3 [

How recursion works—oddsRec

oddsRec :: [Integer] —> [Integer]

oddsRec [] =[]

oddsRec (x:xs) | 1s0dd x = X : oddsRec xs
| otherwise = oddsRec xs

oddsRec [1,2, 3]

oddsRec (1 : (2 : (3 : []1)))
1 : oddsRec (2 : (3 : [1))

1 : oddsRec (3 1)

[
— { x = 3, xs =[], 1s0dd 3 = True }
1 : (3 : oddsRec [])

How recursion works—oddsRec

oddsRec :: [Integer] —> [Integer]

oddsRec [] = []

oddsRec (x:xs) | 1s0dd x = X : oddsRec xs
| otherwise = oddsRec xs

oddsRec [1, 2, 3]

oddsRec (1 : (2 : (3 : [1)))

1 : oddsRec (2 : (3 : []))

1 : oddsRec (3 : [])

1 : (3 : oddsRec [])

1 : (3 : [])

How recursion works—oddsRec

oddsRec :: [Integer] —> [Integer]

oddsRec [] = []

oddsRec (x:xs) | 1s0dd x = X : oddsRec xs
| otherwise = oddsRec xs

oddsRec [1, 2, 3]

oddsRec (1 : (2 : (3 : [1)))

1 : oddsRec (2 : (3 : []))

1 : oddsRec (3 : [])

1 : (3 : oddsRec [])

1 : (3 : [])

[1,3]

How recursion works—oddsRec

oddsRec :: [Integer] —> [Integer]

oddsRec [] = []

oddsRec (x:xs) | 1s0dd x = X : oddsRec xs
| otherwise = oddsRec xs

oddsRec [1, 2, 3]

oddsRec (1 : (2 : (3 : [1)))

1 : oddsRec (2 : (3 : []))

1 : oddsRec (3 : [])

1 : (3 : oddsRec [])

1 : (3 : [])

[1,3]

QuickCheck

—— odds.hs
import Test.QuickCheck

odds :: [Integer] —> [Integer]

odds xs = [x | x <= xs, 1s0dd x]

oddsRec :: [Integer] —-> [Integer]

oddsRec [] = []

oddsRec (x:xs) | 1s0dd x = x : oddsRec xs
| otherwise = oddsRec xs

prop_odds :: [Integer] —> Bool

prop_odds xs = odds xs == oddsRec xs

[Jitterbug]dts: gheci odds.hs

GHCi, version 7.4.2: http://www.haskell.org/ghc/ :? for help
x*Main> quickCheck prop_odds

+++ OK, passed 100 tests.

x*Main>

Part IV

Accumulation: Sum a list

Sum

sum :: [Integer] —-> Integer
sum [] = 0
sum (xX:xs) = X + sum XS

sum [1,2, 3]

Sum

sum <3

Sum
Sum

[Integer]
[] = 0

—> Integer

(x:xX8) = X 4+ sum XS

sum [1,2,3]

sum (1 : (2

Sum

sum <3
Sum
Sum

[Integer] —-> Integer
[] = 0
(x:xXxs) = X + sum Xs

sum :: [Integer] —-> Integer
sum [] = 0
sum (xX:xs) = X + sum XS

Sum

sum <3
Sum
Sum

[Integer] —> Integer
[] = 0
(x:X8) = X 4+ sum XS

sum [1,2, 3]

Sum

sum :: [Integer] —> Integer
sum [] = 0
sum (xX:xs) = X + sum XS

sum [1,2, 3]

Sum

sum :: [Integer] —> Integer
sum [] = 0
sum (xX:xs) = X + sum XS

sum [1,2, 3]

Sum

sum :: [Integer] —> Integer

sum [] = 0

sum (xX:xs) = X 4+ sum XS
sum [1,2, 3]

Sum

sum :: [Integer] —> Integer
sum [] = 0
sum (xX:xs) = X + sum XS

sum [1,2, 3]

Product

product :: [Integer] —-> Integer
product [] = 1
product (x:xs) = X * product xs

product [1,2, 3]

product (1 : (2 : (3 : []1)))

1 *« product (2 : (3 : [1))

1 » (2 * product (3 : [1))

1 » (2 » (3 % product []))

1 x (2 = (3 %= 1))

Part V

Putting 1t all together:

Sum of the squares of the odd numbers 1n a list

Two styles of definition

Comprehension

sumSgOdd
sumSgOdd xs

Recursion

sumSgOddRec
sumSqgOddRec
sumSgOddRec

[]

[Integer]

= Sum

(x:xX83)

[

[Integer]

—> Integer

X*X | X <- xs, 1s0dd x |

1s0dd x
otherwise

—> Integer

0
Xx*xxX + sumSgOddRec xs
sumSgOddRec xs

How recursion works—sumSqgOddRec

sumSgOddRec :: [Integer] —> Integer
sumSgOddRec []
sumSgOddRec (x:xs) | 1s0dd x
| otherwise
sumSgOddRec [1, 2, 3]

[]
Xx*x + sumSgOddRec xs
sumSgOddRec xs

How recursion works—sumSqgOddRec

sumSgOddRec :: [Integer] —> Integer

sumSgOddRec [] =[]

sumSgOddRec (x:xs) | 1s0dd x = x*x t+ sumSgOddRec xs
| otherwise = sumSgOddRec xs

sumSgOddRec [1, 2, 3]

sumSgOddRec (1 : (2 : (3 = [1)))

How recursion works—sumSqgOddRec

sumSgOddRec :: [Integer] —> Integer

sumSqgOddRec [] = 0

sumSgOddRec (x:xs) | 1s0dd x = x*X + sumSgOddRec xs
| otherwise = sumSgOddRec xs

sumSgOddRec [1, 2, 3]

sumSgOddRec (1 : (2 : (3 : [1)))
= { x =1, xs = (2 ¢+ (3 : [1)), 1is0Odd 1 = True }
1x1 + sumSgOddRec (2 : (3 : []1))

How recursion works—sumSqgOddRec

sumSgOddRec :: [Integer] —> Integer

sumSqgOddRec [] = 0

sumSgOddRec (x:xs) | 1s0dd x = x*x t+ sumSgOddRec xs
| otherwise = sumSgOddRec xs

sumSgOddRec [1, 2, 3]
sumSgOddRec (1 : (2 : (3 : [1)))
11 4+ sumSgOddRec (3 = [1))

(2
= { x =2, xs = (3 : []), 1s0dd 2 = False }
1x1 + sumSgOddRec (3

How recursion works—sumSqgOddRec

sumSgOddRec :: [Integer] —> Integer

sumSqgOddRec [] = 0

sumSgOddRec (x:xs) | 1s0dd x = x*X + sumSgOddRec xs
| otherwise = sumSgOddRec xs

sumSgOddRec [1, 2, 3]

sumSgOddRec (1 : (2 : (3 : [1)))
1x1 + sumSgOddRec (2 : (3 : []))
1x1 + sumSgOddRec (3 : [])

— { x =3, xs =[], 1s0dd 3 = True }
1«1 + (3x3 : sumSgOddRec [])

How recursion works—sumSqgOddRec

sumSgOddRec :: [Integer] —> Integer

sumSqgOddRec [] = 0

sumSgOddRec (x:xs) | 1s0dd x = x*x t+ sumSgOddRec xs
| otherwise = sumSgOddRec xs

sumSgOddRec [1, 2, 3]

sumSgOddRec (1 : (2 : (3 : [1)))
1x1 + sumSgOddRec (2 : (3 : []1))
1x1 + sumSgOddRec (3 : [])

1x1 + (3*3 + sumSgOddRec [])

1x1 + (33 + 0)

How recursion works—sumSqgOddRec

sumSgOddRec :: [Integer] —> Integer

sumSqgOddRec [] = 0

sumSgOddRec (x:xs) | 1s0dd x = x*x t+ sumSgOddRec xs
| otherwise = sumSgOddRec xs

sumSgOddRec [1, 2, 3]

sumSgOddRec (1 : (2 : (3 : [1)))
1x1 + sumSgOddRec (2 : (3 : []1))
1x1 + sumSgOddRec (3 : [])

1x1 + (3*3 + sumSgOddRec [])

1«1 + (3%x3 + 0)

1 + (9 + 0)

How recursion works—sumSqgOddRec

sumSgOddRec :: [Integer] —> Integer

sumSqgOddRec [] = 0

sumSgOddRec (x:xs) | 1s0dd x = x*x t+ sumSgOddRec xs
| otherwise = sumSgOddRec xs

sumSgOddRec [1, 2, 3]

sumSgOddRec (1 : (2 : (3 : [1)))
1x1 + sumSgOddRec (2 : (3 : []1))
1x1 + sumSgOddRec (3 : [])

1x1 + (3*3 + sumSgOddRec [])

1«1 + (3%x3 + 0)

1+ (9 + 0)

10

How recursion works—sumSqgOddRec

sumSgOddRec :: [Integer] —> Integer

sumSqgOddRec [] = 0

sumSgOddRec (x:xs) | 1s0dd x = x*x t+ sumSgOddRec xs
| otherwise = sumSgOddRec xs

sumSgOddRec [1, 2, 3]

sumSgOddRec (1 : (2 : (3 : [1)))
1x1 + sumSgOddRec (2 : (3 : []1))
1x1 + sumSgOddRec (3 : [])

1x1 + (3*3 + sumSgOddRec [])

1«1 + (3%x3 + 0)

1 + (9 + 0)

10

