
Informatics 1
Functional Programming Lecture 4

Monday 30 September 2013

Lists and Recursion

Don Sannella
University of Edinburgh

Part I

Lists and Recursion

Cons and append
Cons takes an element and a list.
Append takes two lists.

(:) :: a -> [a] -> [a]
(++) :: [a] -> [a] -> [a]

1 : [2,3] = [1,2,3]
[1] ++ [2,3] = [1,2,3]
[1,2] ++ [3] = [1,2,3]
’l’ : "ist" = "list"
"l" ++ "ist" = "list"
"li" ++ "st" = "list"

[1] : [2,3] -- type error!
1 ++ [2,3] -- type error!
[1,2] ++ 3 -- type error!
"l" : "ist" -- type error!
’l’ ++ "ist" -- type error!

(:) is pronounced cons, for construct
(++) is pronounced append

Lists
Every list can be written using only (:) and [].

[1,2,3] = 1 : (2 : (3 : []))

"list" = [’l’,’i’,’s’,’t’]
= ’l’ : (’i’ : (’s’ : (’t’ : [])))

A recursive definition: A list is either

• empty, written [], or

• constructed, written x:xs, with head x (an element), and tail xs (a list).

A list of numbers
Prelude> null [1,2,3]
False
Prelude> head [1,2,3]
1
Prelude> tail [1,2,3]
[2,3]
Prelude> null [2,3]
False
Prelude> head [2,3]
2
Prelude> tail [2,3]
[3]
Prelude> null [3]
False
Prelude> head [3]
3
Prelude> tail [3]
[]
Prelude> null []
True

Part II

Mapping: Square every element of a list

Two styles of definition—squares
Comprehension

squares :: [Integer] -> [Integer]
squares xs = [x*x | x <- xs]

Recursion

squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

Pattern matching and conditionals
Pattern matching

squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

Conditionals with binding

squaresCond :: [Integer] -> [Integer]
squaresCond ws =

if null ws then
[]

else
let
x = head ws
xs = tail ws

in
x*x : squaresCond xs

How recursion works—squaresRec
squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]

How recursion works—squaresRec
squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))

How recursion works—squaresRec
squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
= { x = 1, xs = (2 : (3 : [])) }

1*1 : squaresRec (2 : (3 : []))

How recursion works—squaresRec
squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
=

1*1 : squaresRec (2 : (3 : []))
= { x = 2, xs = (3 : []) }

1*1 : (2*2 : squaresRec (3 : []))

How recursion works—squaresRec
squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
=

1*1 : squaresRec (2 : (3 : []))
=

1*1 : (2*2 : squaresRec (3 : []))
= { x = 3, xs = [] }

1*1 : (2*2 : (3*3 : squaresRec []))

How recursion works—squaresRec
squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
=

1*1 : squaresRec (2 : (3 : []))
=

1*1 : (2*2 : squaresRec (3 : []))
=

1*1 : (2*2 : (3*3 : squaresRec []))
=

1*1 : (2*2 : (3*3 : []))

How recursion works—squaresRec
squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
=

1*1 : squaresRec (2 : (3 : []))
=

1*1 : (2*2 : squaresRec (3 : []))
=

1*1 : (2*2 : (3*3 : squaresRec []))
=

1*1 : (2*2 : (3*3 : []))
=

1 : (4 : (9 : []))

How recursion works—squaresRec
squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
=

1*1 : squaresRec (2 : (3 : []))
=

1*1 : (2*2 : squaresRec (3 : []))
=

1*1 : (2*2 : (3*3 : squaresRec []))
=

1*1 : (2*2 : (3*3 : []))
=

1 : (4 : (9 : []))
=

[1,4,9]

How recursion works—squaresRec
squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
=

1*1 : squaresRec (2 : (3 : []))
=

1*1 : (2*2 : squaresRec (3 : []))
=

1*1 : (2*2 : (3*3 : squaresRec []))
=

1*1 : (2*2 : (3*3 : []))
=

1 : (4 : (9 : []))
=

[1,4,9]

QuickCheck
-- squares.hs
import Test.QuickCheck

squares :: [Integer] -> [Integer]
squares xs = [x*x | x <- xs]

squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

prop_squares :: [Integer] -> Bool
prop_squares xs = squares xs == squaresRec xs

[jitterbug]dts: ghci squares.hs
GHCi, version 7.4.2: http://www.haskell.org/ghc/ :? for help

*Main> quickCheck prop_squares
+++ OK, passed 100 tests.

*Main>

Part III

Filtering: Select odd elements from a list

Two styles of definition—odds
Comprehension

odds :: [Integer] -> [Integer]
odds xs = [x | x <- xs, isOdd x]

Recursion

oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | isOdd x = x : oddsRec xs

| otherwise = oddsRec xs

Pattern matching and conditionals
Pattern matching with guards

oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | isOdd x = x : oddsRec xs

| otherwise = oddsRec xs

Conditionals with binding
oddsCond :: [Integer] -> [Integer]
oddsCond ws =

if null ws then
[]

else
let
x = head ws
xs = tail ws

in
if isOdd x then

x : oddsCond xs
else

oddsCond xs

How recursion works—oddsRec
oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | isOdd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]

How recursion works—oddsRec
oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | isOdd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))

How recursion works—oddsRec
oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | isOdd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))
= { x = 1, xs = (2 : (3 : [])), isOdd 1 = True }

1 : oddsRec (2 : (3 : []))

How recursion works—oddsRec
oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | isOdd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))
=

1 : oddsRec (2 : (3 : []))
= { x = 2, xs = (3 : []), isOdd 2 = False }

1 : oddsRec (3 : [])

How recursion works—oddsRec
oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | isOdd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))
=

1 : oddsRec (2 : (3 : []))
=

1 : oddsRec (3 : [])
= { x = 3, xs = [], isOdd 3 = True }

1 : (3 : oddsRec [])

How recursion works—oddsRec
oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | isOdd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))
=

1 : oddsRec (2 : (3 : []))
=

1 : oddsRec (3 : [])
=

1 : (3 : oddsRec [])
=

1 : (3 : [])

How recursion works—oddsRec
oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | isOdd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))
=

1 : oddsRec (2 : (3 : []))
=

1 : oddsRec (3 : [])
=

1 : (3 : oddsRec [])
=

1 : (3 : [])
=

[1,3]

How recursion works—oddsRec
oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | isOdd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))
=

1 : oddsRec (2 : (3 : []))
=

1 : oddsRec (3 : [])
=

1 : (3 : oddsRec [])
=

1 : (3 : [])
=

[1,3]

QuickCheck
-- odds.hs
import Test.QuickCheck

odds :: [Integer] -> [Integer]
odds xs = [x | x <- xs, isOdd x]

oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | isOdd x = x : oddsRec xs

| otherwise = oddsRec xs

prop_odds :: [Integer] -> Bool
prop_odds xs = odds xs == oddsRec xs

[jitterbug]dts: ghci odds.hs
GHCi, version 7.4.2: http://www.haskell.org/ghc/ :? for help

*Main> quickCheck prop_odds
+++ OK, passed 100 tests.

*Main>

Part IV

Accumulation: Sum a list

Sum
sum :: [Integer] -> Integer
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]

Sum
sum :: [Integer] -> Integer
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))

Sum
sum :: [Integer] -> Integer
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))
= {x = 1, xs = (2 : (3 : []))}

1 + sum (2 : (3 : []))

Sum
sum :: [Integer] -> Integer
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))
=

1 + sum (2 : (3 : []))
= {x = 2, xs = (3 : [])}

1 + (2 + sum (3 : []))

Sum
sum :: [Integer] -> Integer
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))
=

1 + sum (2 : (3 : []))
=

1 + (2 + sum (3 : []))
= {x = 3, xs = []}

1 + (2 + (3 + sum []))

Sum
sum :: [Integer] -> Integer
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))
=

1 + sum (2 : (3 : []))
=

1 + (2 + sum (3 : []))
=

1 + (2 + (3 + sum []))
=

1 + (2 + (3 + 0))

Sum
sum :: [Integer] -> Integer
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))
=

1 + sum (2 : (3 : []))
=

1 + (2 + sum (3 : []))
=

1 + (2 + (3 + sum []))
=

1 + (2 + (3 + 0))
=

6

Sum
sum :: [Integer] -> Integer
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))
=

1 + sum (2 : (3 : []))
=

1 + (2 + sum (3 : []))
=

1 + (2 + (3 + sum []))
=

1 + (2 + (3 + 0))
=

6

Sum
sum :: [Integer] -> Integer
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))
=

1 + sum (2 : (3 : []))
=

1 + (2 + sum (3 : []))
=

1 + (2 + (3 + sum []))
=

1 + (2 + (3 + 0))
=

6

Product
product :: [Integer] -> Integer
product [] = 1
product (x:xs) = x * product xs

product [1,2,3]
=

product (1 : (2 : (3 : [])))
=

1 * product (2 : (3 : []))
=

1 * (2 * product (3 : []))
=

1 * (2 * (3 * product []))
=

1 * (2 * (3 * 1))
=

6

Part V

Putting it all together:
Sum of the squares of the odd numbers in a list

Two styles of definition
Comprehension

sumSqOdd :: [Integer] -> Integer
sumSqOdd xs = sum [x*x | x <- xs, isOdd x]

Recursion

sumSqOddRec :: [Integer] -> Integer
sumSqOddRec [] = 0
sumSqOddRec (x:xs) | isOdd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

How recursion works—sumSqOddRec
sumSqOddRec :: [Integer] -> Integer
sumSqOddRec [] = []
sumSqOddRec (x:xs) | isOdd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

sumSqOddRec [1,2,3]

How recursion works—sumSqOddRec
sumSqOddRec :: [Integer] -> Integer
sumSqOddRec [] = []
sumSqOddRec (x:xs) | isOdd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

sumSqOddRec [1,2,3]
=

sumSqOddRec (1 : (2 : (3 : [])))

How recursion works—sumSqOddRec
sumSqOddRec :: [Integer] -> Integer
sumSqOddRec [] = 0
sumSqOddRec (x:xs) | isOdd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

sumSqOddRec [1,2,3]
=

sumSqOddRec (1 : (2 : (3 : [])))
= { x = 1, xs = (2 : (3 : [])), isOdd 1 = True }

1*1 + sumSqOddRec (2 : (3 : []))

How recursion works—sumSqOddRec
sumSqOddRec :: [Integer] -> Integer
sumSqOddRec [] = 0
sumSqOddRec (x:xs) | isOdd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

sumSqOddRec [1,2,3]
=

sumSqOddRec (1 : (2 : (3 : [])))
=

1*1 + sumSqOddRec (2 : (3 : []))
= { x = 2, xs = (3 : []), isOdd 2 = False }

1*1 + sumSqOddRec (3 : [])

How recursion works—sumSqOddRec
sumSqOddRec :: [Integer] -> Integer
sumSqOddRec [] = 0
sumSqOddRec (x:xs) | isOdd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

sumSqOddRec [1,2,3]
=

sumSqOddRec (1 : (2 : (3 : [])))
=

1*1 + sumSqOddRec (2 : (3 : []))
=

1*1 + sumSqOddRec (3 : [])
= { x = 3, xs = [], isOdd 3 = True }

1*1 + (3*3 : sumSqOddRec [])

How recursion works—sumSqOddRec
sumSqOddRec :: [Integer] -> Integer
sumSqOddRec [] = 0
sumSqOddRec (x:xs) | isOdd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

sumSqOddRec [1,2,3]
=

sumSqOddRec (1 : (2 : (3 : [])))
=

1*1 + sumSqOddRec (2 : (3 : []))
=

1*1 + sumSqOddRec (3 : [])
=

1*1 + (3*3 + sumSqOddRec [])
=

1*1 + (3*3 + 0)

How recursion works—sumSqOddRec
sumSqOddRec :: [Integer] -> Integer
sumSqOddRec [] = 0
sumSqOddRec (x:xs) | isOdd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

sumSqOddRec [1,2,3]
=

sumSqOddRec (1 : (2 : (3 : [])))
=

1*1 + sumSqOddRec (2 : (3 : []))
=

1*1 + sumSqOddRec (3 : [])
=

1*1 + (3*3 + sumSqOddRec [])
=

1*1 + (3*3 + 0)
=

1 + (9 + 0)

How recursion works—sumSqOddRec
sumSqOddRec :: [Integer] -> Integer
sumSqOddRec [] = 0
sumSqOddRec (x:xs) | isOdd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

sumSqOddRec [1,2,3]
=

sumSqOddRec (1 : (2 : (3 : [])))
=

1*1 + sumSqOddRec (2 : (3 : []))
=

1*1 + sumSqOddRec (3 : [])
=

1*1 + (3*3 + sumSqOddRec [])
=

1*1 + (3*3 + 0)
=

1 + (9 + 0)
=

10

How recursion works—sumSqOddRec
sumSqOddRec :: [Integer] -> Integer
sumSqOddRec [] = 0
sumSqOddRec (x:xs) | isOdd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

sumSqOddRec [1,2,3]
=

sumSqOddRec (1 : (2 : (3 : [])))
=

1*1 + sumSqOddRec (2 : (3 : []))
=

1*1 + sumSqOddRec (3 : [])
=

1*1 + (3*3 + sumSqOddRec [])
=

1*1 + (3*3 + 0)
=

1 + (9 + 0)
=

10

