Informatics 1

Functional Programming Lectures 1 and 2
Monday 23—Tuesday 24 September 2012

Introduction, Functions

Don Sannella

University of Edinburgh

Welcome to Informatics 1, Functional Programming!

Informatics 1 course organiser: Paul Anderson

Functional programming (Infl-FP)
Lecturer: Don Sannella
Teaching assistant: Chris Banks

Computation and logic (Inf1-CL)
Lecturer: Rahul Santhanam

Teaching assistant: Areti Manataki

Informatics Teaching Organization (ITO):
Sue Cade

Where to find us

IF — Informatics Forum
AT — Appleton Tower

Infl course organiser: Paul Anderson dcspaul@inf.ed.ac.uk IF 1.24

Functional programming (Infl-FP)
Lecturer: Don Sannella Don.Sannella@inf.ed.ac.uk IF 4.04
Teaching assistant: Chris Banks C.Banks@ed.ac.uk IF 3.50

Informatics Teaching Organization (ITO):
Sue Cade AT 4.02

Required text and reading

Haskell: The Craft of Functional Programming (Third Edition),
Simon Thompson, Addison-Wesley, 2011.

or

Learn You a Haskell for Great Good!
Miran Lipovaca, No Starch Press, 2011.

Reading assignment

Monday 23 September 2013 Thompson: parts of Chap. 1-3 and 5
Lipovaca: parts of intro, Chap. 1-3
Monday 30 September 2013 etc. See the course web page

The assigned reading covers the material very well with plenty of examples.

There will be no lecture notes, just the books. Get one of them and read it!

Lab Week Exercise and Drop-In Labs

Computer Lab West
Computer Lab West

Monday 3-5pm (demonstrator 3:00-4:00pm)
()

Wednesday 2-5pm (demonstrator 3:00-4:00pm) Computer Lab West
()
()

Tuesday 2-5pm (demonstrator 3:00-4:00pm

Computer Lab West
Computer Lab West

Thursday 2-5pm (demonstrator 3:00-4:00pm
Friday 3-5pm (demonstrator 3:00-4:00pm

Computer Lab West — Appleton Tower, fifth floor

Lab Week Exercise
submit by 5pm Friday 27 September 2013
do all the parts

Tutorials

ITO will assign you to tutorials, which start in Week 3.

Attendance is compulsory.

Tuesday/Wednesday Computation and Logic
Thursday/Friday Functional Programming

Contact the ITO if you need to change to a tutorial at a different time.

You must do each week’s tutorial exercise! Do it before the tutorial!
Bring a printout of your work to the tutorial!
You may collaborate, but you are responsible for knowing the material.
Mark of 0% on tutorial exercises means you have no incentive to plagiarize.

But you will fail the exam if you don’t do the tutorial exercises!

Formative vs. Summative

0%
0%
0%
0%
10%
0%
0%
0%
0%
0%
0%
90%

Lab week exercise
Tutorial 1
Tutorial 2
Tutorial 3
Class Test
Tutorial 4
Tutorial 5
Tutorial 6
Tutorial 7
Mock Test
Tutorial 8

Final Exam

Course Webpage
See http://www.inf.ed.ac.uk/teaching/courses/infl /fp/ for:

e Course content

e Organisational information: what, where, when

e Lecture slides, reading assignment, tutorial exercises, solutions
e Past exam papers

e Programming competition

e Other resources

Any questions?

Any questions?

Questions make you look good!
Don'’s secret technique for asking questions.

Don’s secret goal for this course

Part 1

Introduction

Why learn Haskell?”

e Important to learn many languages over your career

e Functional languages increasingly important in industry

e Puts experienced and inexperienced programmers on an equal footing
e Operate on data structure as a whole rather than piecemeal

e Good for concurrency, which is increasingly important

Linguistic Relativity

“Language shapes the way we think, and determines what we
can think about.”

Benjamin Lee Whort, 1897-1941

“The limits of my language mean the limits of my world.”
Ludwig Wittgenstein, 1889-1951

“A language that doesn’t affect the way you think about

programming, is not worth knowing.”
Alan Perlis, 1922-1990

What 1s Haskell?

e A functional programming language

e For use in education, research, and industry
e Designed by a committee

e Mature—over 20 years old!

“A History of Haskell: being lazy with class”,

Paul Hudak (Yale University),

John Hughes (Chalmers University),

Simon Peyton Jones (Microsoft Research),

Philip Wadler (Edinburgh University),

The Third ACM SIGPLAN History of Programming Languages
Conference (HOPL-III),

San Diego, California, June 9-10, 2007.

Look at these web pages:

ICFP 2013

icfpconference.org/icfp2013/

Jane Street Capital

www.janestreet.com /technology/

Microsoft

www.microsoft.com/casestudies/

Case_Study_Detail.aspx?casestudyid=4000006794

Families of programming languages

e Functional
Erlang, F#, Haskell, Hope, Javascript, Miranda, OCaml, Racket,
Scala, Scheme, SML

e More powerful
e More compact programs
e Object-oriented
C++, F'#, Java, Javascript, OCaml, Perl, Python, Ruby, Scala
e More widely used

e More libraries

Functional programming in the real world

e Google MapReduce, Sawzall
e Ericsson AXE phone switch
e Perl 6

e DARCS

e XMonad

e Yahoo

o Twitter

e Facebook

e Garbage collection

Functional programming is the new new thing
Erlang, F#, Scala attracting a lot of interest from developers

Features from functional languages are appearing in other languages
e Garbage collection Java, C#, Python, Perl, Ruby, Javascript
e Higher-order functions Java, C#, Python, Perl, Ruby, Javascript
e Generics Java, C#
e List comprehensions C#, Python, Perl 6, Javascript

e Type classes C+—+ “concepts”

Part 11

Functions

What is a function?

e A recipe for generating an output from inputs:
“Multiply a number by itself”

e A set of (input, output) pairs:
(1,1) (2,4) (3,9) (4,16) (5,25) ...

e An equation:

fx=az’

e A graph relating inputs to output (for numbers only):

/"‘4

Kinds of data

e Integers: 42, -69
e Floats: 3.14
e Characters: ’h’

e Strings: "hello"

e Pictures: 1

Applying a function

invert :: Picture -> Picture
knight :: Picture

invert knight

> invert

Composing functions

beside :: Picture -> Picture -> Picture
flipV :: Picture -> Picture
invert :: Picture -> Picture

knight :: Picture

beside (invert knight) (f1lipV knight)

invert

beside

flipV

Defining a new function

double :: Picture -> Picture
double p = ©beside (invert p) (flipV p)

double knight

double

‘ invert
‘ flipV

Defining a new function

double :: Picture -> Picture
double p = ©beside (invert p) (flipV p)

double knight

double

Terminology

Type signature

double :: Picture -> Picture

Function declaration

double p = beside (invert p) (flipV p)
®

function name function body

Terminology

formal parameter actual parameter
[
double p = beside (invert p) (flipV p)

[
double knight

function definition expression

Part 111

The Rule of Leibniz

Operations on numbers

[jitterbugldts: ghci
GHCi, version 7.4.2: http://www.haskell.org/ghc/ :7 for help

Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
Prelude> 3+3

6

Prelude> 3%*3

9

Prelude>

Functions over numbers

squares.hs
square :: Integer -> Integer
square X = X ¥ X

pyth :: Integer -> Integer -> Integer
pyth a b = square a + square b

Testing our functions

[jitterbugldts: ghci squares.hs
GHCi, version 7.4.2: http://www.haskell.org/ghc/ :7 for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

[1 of 1] Compiling Main (squares.hs, interpreted)

Ok, modules loaded: Main.
*Main> square 3

9

*Main> pyth 3 4

25

*Main>

A few more tests

*Main> square O

0
*Main>
1
*Main>
4
*Main>
9
*Main>
16
*Main>
9
*Main>

square

square

square

square

square

square

1

4

(-3)

10000000000

100000000000000000000

Declaration and evaluation

Declaration (file squares.hs)

square :: Integer -> Integer
square X = X ¥ X

pyth :: Integer -> Integer -> Integer
pyth a b = square a + square b

Evaluation

[jitterbugldts: ghci squares.hs
GHCi, version 7.4.2: http://www.haskell.org/ghc/ :7 for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

[1 of 1] Compiling Main (squares.hs, interpreted)

Ok, modules loaded: Main.
*Main> pyth 3 4

25

*Main>

The Rule of Leibniz

square :: Integer -> Integer
square X = X * X

pyth :: Integer -> Integer -> Integer
pyth a b = square a + square b

pyth 3 4

square 3 + square 4
3*x3 + 4x4

9 + 16

25

The Rule of Leibniz

e Identity of Indiscernables: “No two distinct things exactly resemble

one another.” — Leibniz

That is, two objects are identical if and only if they satisfy the same

properties.
e “A difference that makes no difference is no difference.” — Spock

e “Equals may be substituted for equals.” — My high school teacher

Numerical operations are functions

(+) :: Integer -> Integer -> Integer
(*) :: Integer -> Integer -> Integer

Main*> 3+4
7
Main*> 3%4
12

3 + 4 stands for (+) 3 4
3 *x 4 stands for (x) 3 4

Main*> (+) 3 4
-
Main*> (%) 3 4
12

Precedence and parentheses

Function application takes precedence over infix operators.

(Function applications binds more tightly than infix operators.)

square 3 + square 4

(square 3) + (square 4)

Multiplication takes precedence over addition.
(Multiplication binds more tightly than addition.)
3*%3 + 4x4

(3%3) + (4x4)

Associativity

Addition is associative.

3+ (4 +5)
=3+9
=12
=7+5
=(3+4)+5

Addition associates to the left.
3+4 + 5

(3+4) +5

Part 1V

QuickCheck

QuickCheck properties

squares_prop.hs

import Test.(QuickCheck

square :: Integer -> Integer
square X = X * X

pyth :: Integer -> Integer -> Integer
pyth a b = square a + square b

prop_square :: Integer -> Bool
prop_square x =
square x >= 0

prop_squares :: Integer -> Integer -> Bool
prop_squares X y =
square (x+y) == square x + 2*x*y + square y

prop_pyth :: Integer -> Integer -> Bool

prop_pyth x y =
square (x+y) == pyth x y + 2*x*y

[jitterbugldts: ghci squares_prop.hs

GHCi, version 7.4.2: http://www.haskell.org/ghc/ :7 for help
Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.

[1 of 1] Compiling Main (squares_prop.hs, interpreted)
*Main> quickCheck prop_square

Loading package array-0.4.0.0 ... linking ... done.
Loading package deepseq-1.3.0.0 ... linking ... done.
Loading package old-locale-1.0.0.4 ... linking ... done.
Loading package time-1.4 ... linking ... done.

Loading package random-1.0.1.1 ... linking ... done.
Loading package containers-0.4.2.1 ... linking ... done.
Loading package pretty-1.1.1.0 ... linking ... done.
Loading package template-haskell ... linking ... done.
Loading package QuickCheck-2.5.1.1 ... linking ... done.
+++ 0K, passed 100 tests.

*Main> quickCheck prop_squares

+++ 0K, passed 100 tests.

*Main> quickCheck prop_pyth

+++ 0K, passed 100 tests.

Part V

The Rule of Leibniz (reprise)

Gottfried Wilhelm Leibniz (1646-1716)

Gottfried Wilhelm Leibniz (1646-1716)

Anticipated symbolic logic, discovered calculus (independently of Newton),
introduced the term “monad” to philosophy.

“The only way to rectify our reasonings is to make them as
tangible as those of the Mathematicians, so that we can find our
error at a glance, and when there are disputes among persons, we
can simply say: Let us calculate, without further ado, to see who
is right.”

“In symbols one observes an advantage in discovery which is
greatest when they express the exact nature of a thing briefly and,
as it were, picture it; then indeed the labor of thought is
wonderfully diminished.”

